Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dis Markers ; 2021: 3682034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790277

RESUMO

OBJECTIVE: This study is aimed at exploring the possible neuroprotective mechanism of aspirin and the effect of bacterial endotoxin lipopolysaccharide (LPS) during cerebral ischaemia-reperfusion (CIRP) injury. METHODS: We established three animal models: the CIRP, LPS, and CIRP+LPS models. Mortality, the injured brain area, and the beam walking test were used to estimate the degree of cerebral injury among the rats. Immunohistochemistry and immunofluorescence were used to detect activated microglia, matrix metalloproteinase-3 (MMP-3), and osteopontin (OPN). RESULTS: The injured brain area and mortality were dramatically reduced (p < 0.01), and the beam walking test scores were elevated (p < 0.01) in the acetylsalicylic acid (ASA) group compared to the control group. The number of microglia-, MMP-3-, and OPN-positive cells also increased. Furthermore, the number of GSI-B4, OPN, and MMP-3 cells decreased in the ASA group compared to the control group. After LPS stimulation, the number of microglia reached a peak at 24 h; at 7 d, these cells disappeared. In the ASA group, the number of microglia was significantly smaller (p < 0.05), especially at 24 h (p < 0.01), compared to the LPS group. Moreover, the injured brain area and the mortality were dramatically increased and the beam walking test scores were reduced (p < 0.01) after LPS simulation following CIRP. The degree of injury in the ASA group resembled that in the control group. However, the number of MMP-3-immunoreactive neurons or microglia was significantly larger than that of the control group (p < 0.05). In the ASA group, the MMP-3 expression was also considerably decreased (p < 0.05). CONCLUSIONS: After CIRP, microglia were rapidly activated and the expression of MMP-3 and OPN significantly increased. For rats injected with LPS at reperfusion, the injured brain area and mortality also dramatically increased and the neurologic impairment worsened. However, ASA exhibited a neuroprotective effect during CIRP injury. Furthermore, ASA can reverse LPS-induced cerebral injury and inhibit the inflammatory reaction after CIRP injury.


Assuntos
Aspirina/farmacologia , Lesões Encefálicas/prevenção & controle , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Metaloproteinase 3 da Matriz/química , Fármacos Neuroprotetores/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/enzimologia , Lesões Encefálicas/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Sprague-Dawley
2.
Front Cell Neurosci ; 11: 329, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104534

RESUMO

Stroke is the second leading cause of death worldwide. Stroke induced proliferation and differentiation of neural stem cells (NSCs) that have been proven to participate in ischemic brain repair. However, molecular mechanisms that regulate neurogenesis have not been fully investigated. MicroRNAs play an important role in the neurological repairing process and impact stroke recovery outcome. MiRNA-148b has been reported to regulate cell proliferation in tumor cells, but its role in NSCs after ischemic stroke remains unknown. Here, we found an overexpression of MiRNA-148b in subventricular zone (SVZ) of rat ischemic brain. In original cultured ischemic NSCs, transfection of MiRNA-148b mimic or inhibitor could suppress or enhance the expression of Wnt-1, ß-catenin, and Cyclin D1, hence effected wnt/ß-catenin signaling. MiRNA-148b inhibitor promoted NSCs proliferation and differentiation into newborn neural and astrocytes, and this action could be silenced with knockdown of Wnt-1. In middle cerebral artery occlusion (MCAo) rats, injection of MiRNA-148b inhibitor could reduce ischemic lesion volume and improve neurological function outcome. Collectively, our data suggest that MiRNA-148b suppressed wnt/ß-catenin signaling attenuates proliferation and differentiation of neural stem cells, these findings shed new light on the role of MiRNA-148b in the recovery process during the stroke and contribute to the novel therapy strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA