Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Biol Macromol ; : 133955, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025177

RESUMO

Coronaviruses (CoV) are highly pathogenic single-strand RNA viruses. CoV infections cause fatal respiratory symptoms and lung injuries in humans and significant economic losses in livestock. Since the SARS-2 outbreak in 2019, the highly conserved main protease (Mpro), also termed 3-chymotrypsin-like protease (3CLpro), has been considered an attractive drug target for treating CoV infections. Mpro mediates the proteolytic cleavage of eleven sites in viral polypeptides necessary for virus replication. Here, we report that disulfiram, an FDA-approved drug for alcoholic treatment, exhibits a broad-spectrum inhibitory effect on CoV Mpros. Analytical ultracentrifugation and circular dichroism analyses indicated that disulfiram treatment blocks the dimeric formation of SARS and PEDV Mpros and decreases the thermostability of SARS, SARS-2, and PEDV Mpros, whereas it facilitates the dimerization and stability of MERS Mpro. Furthermore, mass spectrometry and structural alignment revealed that disulfiram targets the Cys44 residue of Mpros, which is located at the substrate entrance and close to the catalytic His41. In addition, molecular docking analysis suggests that disulfiram conjugation interferes with substrate entry to the catalytic center. In agreement, mutation of Cys44 modulates the disulfiram sensitivity of CoV Mpros. Our study suggests a broad-spectrum inhibitory function of disulfiram against CoV Mpros.

2.
Cell Death Discov ; 10(1): 244, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773077

RESUMO

TFIID, one of the general transcription factor (GTF), regulates transcriptional initiation of protein-coding genes through direct binding to promoter elements and subsequent recruitment of other GTFs and RNA polymerase II. Although generally required for most protein-coding genes, accumulated studies have also demonstrated promoter-specific functions for several TFIID subunits in gene activation. Here, we report that TBP-associated factor 2 (TAF2) specifically regulates TFIID binding to a small subset of protein-coding genes and is essential for cell growth of multiple cancer lines. Co-immunoprecipitation assays revealed that TAF2 may be sub-stoichiometrically associated with the TFIID complex, thus indicating a minor fraction of TAF2-containing TFIID in cells. Consistently, integrated genome-wide profiles show that TAF2 binds to and regulates only a small subset of protein-coding genes. Furthermore, through the use of an inducible TAF2 degradation system, our results reveal a reduction of TBP/TFIID binding to several ribosomal genes upon selective ablation of TAF2. In addition, depletion of TAF2, as well as the TAF2-regulated ribosomal protein genes RPL30 and RPL39, decreases ribosome assembly and global protein translation. Collectively, this study suggests that TAF2 within the TFIID complex is of functional importance for TBP/TFIID binding to and expression of a small subset of protein-coding genes, thus establishing a previously unappreciated promoter-selective function for TAF2.

3.
Endocr Relat Cancer ; 30(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902083

RESUMO

Ataxia telangiectasia and Rad3-related protein (ATR) is a critical component of the DNA damage response and a potential target in the treatment of cancers. An ATR inhibitor, BAY 1895344, was evaluated for its use in differentiated thyroid cancer (DTC) therapy. BAY 1895344 inhibited cell viability in four DTC cell lines (TPC1, K1, FTC-133, and FTC-238) in a dose-dependent manner. BAY 1895344 treatment arrested DTC cells in the G2/M phase, increased caspase-3 activity, and caused apoptosis. BAY 1895344 in combination with either sorafenib or lenvatinib showed mainly synergistic effects in four DTC cell lines. The combination of BAY 1895344 with dabrafenib plus trametinib revealed synergistic effects in K1 cells that harbor BRAFV600E. BAY 1895344 monotherapy retarded the growth of K1 and FTC-133 tumors in xenograft models. The combinations of BAY 1895344 plus lenvatinib and BAY 1895344 with dabrafenib plus trametinib were more effective than any single therapy in a K1 xenograft model. No appreciable toxicity appeared in animals treated with either a single therapy or a combination treatment. Our findings provide the rationale for the development of clinical trials of BAY 1895344 in the treatment of DTC.


Assuntos
Adenocarcinoma , Neoplasias da Glândula Tireoide , Animais , Humanos , Neoplasias da Glândula Tireoide/patologia , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Sorafenibe/farmacologia , Adenocarcinoma/tratamento farmacológico , Proteínas Mutadas de Ataxia Telangiectasia
4.
Chem Res Toxicol ; 35(5): 880-889, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35511042

RESUMO

Bioallethrin belongs to the family of pyrethroid insecticides. Previous studies have shown that bioallethrin affected the function of muscarinic receptor and subsequently induced neurotoxicity in different brain models. Reactive oxygen species (ROS) are generated in the metabolic course of the human body, which can cause human damage when overactivated. However, whether bioallethrin evokes cytotoxicity through ROS signaling and whether the antioxidant Vitamin E (VE) protects these cytotoxic responses in human glial cell model are still elusive. This study investigated the effect of bioallethrin on cytotoxicity through ROS signaling and evaluated the protective effect of the antioxidant VE in DBTRG-05MG human glioblastoma cells. The cell counting kit-8 (CCK-8) was used to measure cell viability. Intracellular ROS and glutathione (GSH) levels were measured by a cellular assay kit. The levels of apoptosis- and antioxidant-related protein were analyzed by Western blotting. In DBTRG-05MG cells, bioallethrin (25-75 µM) concentration-dependently induced cytotoxicity by increasing ROS productions, decreasing GSH contents, and regulating protein expressions related to apoptosis or antioxidation. Furthermore, these cytotoxic effects were partially reversed by VE (20 µM) pretreatment. Together, VE partially lessened bioallethrin-induced apoptosis through oxidative stress in DBTRG-05MG cells. The data assist us in identifying the toxicological mechanism of bioallethrin and offer future development of the antioxidant VE to reduce brain damage caused by bioallethrin.


Assuntos
Antineoplásicos , Glioblastoma , Piretrinas , Aletrinas , Antineoplásicos/farmacologia , Antioxidantes/metabolismo , Apoptose , Sobrevivência Celular , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Estresse Oxidativo , Piretrinas/uso terapêutico , Piretrinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Vitamina E/farmacologia
5.
Nat Cell Biol ; 24(3): 384-399, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35210568

RESUMO

Canonically, EZH2 serves as the catalytic subunit of PRC2, which mediates H3K27me3 deposition and transcriptional repression. Here, we report that in acute leukaemias, EZH2 has additional noncanonical functions by binding cMyc at non-PRC2 targets and uses a hidden transactivation domain (TAD) for (co)activator recruitment and gene activation. Both canonical (EZH2-PRC2) and noncanonical (EZH2-TAD-cMyc-coactivators) activities of EZH2 promote oncogenesis, which explains the slow and ineffective antitumour effect of inhibitors of the catalytic function of EZH2. To suppress the multifaceted activities of EZH2, we used proteolysis-targeting chimera (PROTAC) to develop a degrader, MS177, which achieved effective, on-target depletion of EZH2 and interacting partners (that is, both canonical EZH2-PRC2 and noncanonical EZH2-cMyc complexes). Compared with inhibitors of the enzymatic function of EZH2, MS177 is fast-acting and more potent in suppressing cancer growth. This study reveals noncanonical oncogenic roles of EZH2, reports a PROTAC for targeting the multifaceted tumorigenic functions of EZH2 and presents an attractive strategy for treating EZH2-dependent cancers.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias , Carcinogênese/genética , Proteínas do Citoesqueleto/metabolismo , Proteína p300 Associada a E1A , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Proteólise , Ativação Transcricional
6.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217626

RESUMO

Acute myeloid leukemias (AMLs) with the NUP98-NSD1 or mixed lineage leukemia (MLL) rearrangement (MLL-r) share transcriptomic profiles associated with stemness-related gene signatures and display poor prognosis. The molecular underpinnings of AML aggressiveness and stemness remain far from clear. Studies with EZH2 enzymatic inhibitors show that polycomb repressive complex 2 (PRC2) is crucial for tumorigenicity in NUP98-NSD1+ AML, whereas transcriptomic analysis reveal that Kdm5b, a lysine demethylase gene carrying "bivalent" chromatin domains, is directly repressed by PRC2. While ectopic expression of Kdm5b suppressed AML growth, its depletion not only promoted tumorigenicity but also attenuated anti-AML effects of PRC2 inhibitors, demonstrating a PRC2-|Kdm5b axis for AML oncogenesis. Integrated RNA sequencing (RNA-seq), chromatin immunoprecipitation followed by sequencing (ChIP-seq), and Cleavage Under Targets & Release Using Nuclease (CUT&RUN) profiling also showed that Kdm5b directly binds and represses AML stemness genes. The anti-AML effect of Kdm5b relies on its chromatin association and/or scaffold functions rather than its demethylase activity. Collectively, this study describes a molecular axis that involves histone modifiers (PRC2-|Kdm5b) for sustaining AML oncogenesis.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas Nucleares/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Proteínas Repressoras/metabolismo , Animais , Carcinogênese , Perfilação da Expressão Gênica , Histona Desmetilases/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Camundongos , Proteínas Oncogênicas/metabolismo , Complexo Repressor Polycomb 2/antagonistas & inibidores , Ligação Proteica , Análise de Sequência de RNA/métodos
7.
J Virol ; 96(1): e0137221, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643430

RESUMO

Coronaviral papain-like proteases (PLpros) are essential enzymes that mediate not only the proteolytic processes of viral polyproteins during virus replication but also the deubiquitination and deISGylation of cellular proteins that attenuate host innate immune responses. Therefore, PLpros are attractive targets for antiviral drug development. Here, we report the crystal structure of papain-like protease 2 (PLP2) of porcine epidemic diarrhea virus (PEDV) in complex with ubiquitin (Ub). The X-ray structural analyses reveal that PEDV PLP2 interacts with the Ub substrate mainly through the Ub core region and C-terminal tail. Mutations of Ub-interacting residues resulted in a moderately or completely abolished deubiquitinylating function of PEDV PLP2. In addition, our analyses also indicate that 2-residue-extended blocking loop 2 at the S4 subsite contributes to the substrate selectivity and binding affinity of PEDV PLP2. Furthermore, the PEDV PLP2 Glu99 residue, conserved in alphacoronavirus PLpros, was found to govern the preference of a positively charged P4 residue of peptidyl substrates. Collectively, our data provided structure-based information for the substrate binding and selectivity of PEDV PLP2. These findings may help us gain insights into the deubiquitinating (DUB) and proteolytic functions of PEDV PLP2 from a structural perspective. IMPORTANCE Current challenges in coronaviruses (CoVs) include a comprehensive understanding of the mechanistic effects of associated enzymes, including the 3C-like and papain-like proteases. We have previously reported that the PEDV PLP2 exhibits a broader substrate preference, superior DUB function, and inferior peptidase activity. However, the structural basis for these functions remains largely unclear. Here, we show the high-resolution X-ray crystal structure of PEDV PLP2 in complex with Ub. Integrated structural and biochemical analyses revealed that (i) three Ub core-interacting residues are essential for DUB function, (ii) 2-residue-elongated blocking loop 2 regulates substrate selectivity, and (iii) a conserved glutamate residue governs the substrate specificity of PEDV PLP2. Collectively, our findings provide not only structural insights into the catalytic mechanism of PEDV PLP2 but also a model for developing antiviral strategies.


Assuntos
Proteases Semelhantes à Papaína de Coronavírus/química , Vírus da Diarreia Epidêmica Suína/química , Coronavirus/química , Coronavirus/classificação , Coronavirus/enzimologia , Proteases Semelhantes à Papaína de Coronavírus/genética , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Cristalografia por Raios X , Mutação , Vírus da Diarreia Epidêmica Suína/enzimologia , Vírus da Diarreia Epidêmica Suína/genética , Ligação Proteica , Domínios Proteicos , Relação Estrutura-Atividade , Especificidade por Substrato , Ubiquitina/química , Ubiquitina/metabolismo
8.
J Cardiovasc Nurs ; 37(3): 204-212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34145204

RESUMO

BACKGROUND: Frailty may increase the risk of complications and mortality in patients undergoing cardiac surgery. Few studies on frailty and its associated factors have been conducted in these patients. OBJECTIVE: The aim of this study was to explore frailty and related factors in patients undergoing cardiac surgery. METHODS: A total of 154 patients undergoing cardiac surgery in northern Taiwan were recruited using a longitudinal study design and interviewed using structured questionnaires assessing physical activity, anxiety and depression, and social support before surgery and at 1 month and 3 months after surgery. RESULTS: The prevalence of frailty in patients undergoing cardiac surgery was 16.2%, 20.5%, and 16.6% before surgery and at 1 month and 3 months after surgery, respectively. Frail and prefrail patients undergoing cardiac surgery were more likely to be unemployed, have gout, have a higher New York Heart Association class, have preoperative dysrhythmia, undergo cardiopulmonary bypass, have a lower functional ability, have a higher European System for Cardiac Operative Risk Evaluation score, have a longer anesthesia time, have longer endotracheal tube and extracorporeal circulation times, have longer intensive care unit and hospital stays, have lower hemoglobin and albumin levels, have higher anxiety and depression levels, and have lower Mini-Mental State Examination scores. The significant predictors of prefrailty and frailty included unemployment, the presence of gout, higher New York Heart Association classes, less independence in activities of daily living, lower hemoglobin levels, and higher levels of depression. CONCLUSIONS: Frailty was associated with patients' functional status, perioperative conditions and psychosocial factors. Preoperative assessments of frailty and appropriate interventions are needed to improve frailty in patients undergoing cardiac surgery.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Fragilidade , Gota , Atividades Cotidianas , Idoso , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Idoso Fragilizado , Fragilidade/complicações , Fragilidade/epidemiologia , Avaliação Geriátrica , Gota/complicações , Hemoglobinas , Humanos , Estudos Longitudinais , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Fatores de Risco
9.
Cell Death Dis ; 12(10): 880, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580281

RESUMO

USP7, one of the most abundant ubiquitin-specific proteases (USP), plays multifaceted roles in many cellular events, including oncogenic pathways. Accumulated studies have suggested that USP7, through modulating the MDM2/MDMX-p53 pathway, is a promising target for cancer treatment; however, little is known about the function of USP7 in p53-deficient tumors. Here we report that USP7 regulates the autoregulation of SMAD3, a key regulator of transforming growth factor ß (TGFß) signaling, that represses the cell progression of p53-deficient lung cancer. CRISPR/Cas9-mediated inactivation of USP7 in p53-deficient lung cancer H1299 line resulted in advanced cell proliferation in vitro and in xenograft tumor in vivo. Genome-wide analyses (ChIP-seq and RNA-seq) of USP7 KO H1299 cells reveal a dramatic reduction of SMAD3 autoregulation, including decreased gene expression and blunted function of associated super-enhancer (SE). Furthermore, biochemical assays show that SMAD3 is conjugated by mono-ubiquitin, which negatively regulates the DNA-binding function of SMAD3, in USP7 KO cells. In addition, cell-free and cell-based analyses further demonstrate that the deubiquitinase activity of USP7 mediates the removal of mono-ubiquitin from SMAD3 and facilitates the DNA-binding of SMAD3-SMAD4 dimer at SMAD3 locus, and thus enhance the autoregulation of SMAD3. Collectively, our study identified a novel mechanism by which USP7, through catalyzing the SMAD3 de-monoubiquitination, facilitates the positive autoregulation of SMAD3, and represses the cancer progression of p53-deficient lung cancer.


Assuntos
Progressão da Doença , Homeostase , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteína Smad3/metabolismo , Proteína Supressora de Tumor p53/deficiência , Peptidase 7 Específica de Ubiquitina/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Regulação para Baixo , Elementos Facilitadores Genéticos/genética , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Loci Gênicos , Células HEK293 , Humanos , Luciferases/metabolismo , Neoplasias Pulmonares/genética , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , RNA Guia de Cinetoplastídeos/metabolismo , Proteína Supressora de Tumor p53/metabolismo
10.
Eur J Cardiovasc Nurs ; 20(8): 745-751, 2021 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-34472606

RESUMO

BACKGROUND: Postoperative delirium (POD) is a common complication that may occur from 24 to 72 h after cardiac surgery. Frailty is a chronic syndrome that leads to a decline in physiological reserve and to disability. The associations between frailty and POD are unclear. AIMS: To investigate associations between POD and frailty in patients undergoing cardiac surgery and to analyse predictors of POD. METHODS AND RESULTS: Convenience sampling was used to recruit 152 patients who underwent cardiac surgery in two medical centres in northern Taiwan. Preoperative frailty in these patients was evaluated using Fried's frailty phenotype. Delirium in patients was assessed from postoperative day 1 to day 5 using the confusion assessment method for intensive care units. A total of 152 patients who underwent cardiac surgery included 68 (44.74%) prefrail patients and 21 (13.81%) patients with frailty after the surgery. Ten patients (6.58%) developed delirium after cardiac surgery. The occurrence of delirium peaked at postoperative day 2, and the average duration of delirium was 3 days. A case-control comparison revealed a significant correlation between preoperative frailty and POD. Significant predictors of POD in patients undergoing cardiac surgery included the European System for Cardiac Operative Risk Evaluation II, preoperative arrhythmia, and preoperative anxiety and depression. CONCLUSION: Preoperative frailty was correlated with POD. Preoperative arrhythmia, anxiety, and depression are predictors of POD. Nurses should perform preoperative assessments of surgical risk and physiological and psychological conditions of patients undergoing cardiac surgery and monitor the occurrence of POD.


Assuntos
Delírio , Fragilidade , Delírio/etiologia , Fragilidade/complicações , Humanos , Unidades de Terapia Intensiva , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Estudos Prospectivos , Fatores de Risco
11.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33542097

RESUMO

The chimeric transcription factor E2A-PBX1, containing the N-terminal activation domains of E2A fused to the C-terminal DNA-binding domain of PBX1, results in 5% of pediatric acute lymphoblastic leukemias (ALL). We recently have reported a mechanism for RUNX1-dependent recruitment of E2A-PBX1 to chromatin in pre-B leukemic cells; but the subsequent E2A-PBX1 functions through various coactivators and the general transcriptional machinery remain unclear. The Mediator complex plays a critical role in cell-specific gene activation by serving as a key coactivator for gene-specific transcription factors that facilitates their function through the RNA polymerase II transcriptional machinery, but whether Mediator contributes to aberrant expression of E2A-PBX1 target genes remains largely unexplored. Here we show that Mediator interacts directly with E2A-PBX1 through an interaction of the MED1 subunit with an E2A activation domain. Results of MED1 depletion by CRISPR/Cas9 further indicate that MED1 is specifically required for E2A-PBX1-dependent gene activation and leukemic cell growth. Integrated transcriptome and cistrome analyses identify pre-B cell receptor and cell cycle regulatory genes as direct cotargets of MED1 and E2A-PBX1. Notably, complementary biochemical analyses also demonstrate that recruitment of E2A-PBX1 to a target DNA template involves a direct interaction with DNA-bound RUNX1 that can be further stabilized by EBF1. These findings suggest that E2A-PBX1 interactions with RUNX1 and MED1/Mediator are of functional importance for both gene-specific transcriptional activation and maintenance of E2A-PBX1-driven leukemia. The MED1 dependency for E2A-PBX1-mediated gene activation and leukemogenesis may provide a potential therapeutic opportunity by targeting MED1 in E2A-PBX1+ pre-B leukemia.


Assuntos
Carcinogênese/genética , Proteínas de Homeodomínio/metabolismo , Leucemia/genética , Leucemia/patologia , Subunidade 1 do Complexo Mediador/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Transcrição Gênica , Linfócitos B/patologia , Carcinogênese/patologia , Pontos de Checagem do Ciclo Celular , Proliferação de Células/genética , Sobrevivência Celular , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , DNA de Neoplasias/metabolismo , Regulação para Baixo/genética , Regulação Leucêmica da Expressão Gênica , Genes Neoplásicos , Humanos , Ligação Proteica , Estabilidade Proteica
12.
Int J Biol Macromol ; 176: 490-497, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582217

RESUMO

Disulfiram is a promising repurposed drug that, combining with radiation and chemotherapy, exhibits effective anticancer activities in several preclinical models. The cellular metabolites of disulfiram have been established, however, the intracellular targets of disulfiram remain largely unexplored. We have previously reported that disulfiram suppresses the coronaviral papain-like proteases through attacking their zinc-finger domains, suggesting an inhibitory function potentially on other proteases with similar catalytic structures. Ubiquitin-specific proteases (USPs) share a highly-conserved zinc-finger subdomain that structurally similar to the papain-like proteases and are attractive anticancer targets as upregulated USPs levels are found in a variety of tumors. Here, we report that disulfiram functions as a competitive inhibitor for both USP2 and USP21, two tumor-related deubiquitinases. In addition, we also observed a synergistic inhibition of USP2 and USP21 by disulfiram and 6-Thioguanine (6TG), a clinical drug for acute myeloid leukemia. Kinetic analyses revealed that both drugs exhibited a slow-binding mechanism, moderate inhibitory parameters, and a synergistically inhibitory effect on USP2 and USP21, suggesting the potential combinatory use of these two drugs for USPs-related tumors. Taken together, our study provides biochemical evidence for repurposing disulfiram and 6TG as a combinatory treatment in clinical applications.


Assuntos
Dissulfiram/química , Inibidores Enzimáticos/química , Tioguanina/química , Ubiquitina Tiolesterase , Dissulfiram/agonistas , Sinergismo Farmacológico , Humanos , Tioguanina/agonistas , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/química
13.
Nat Genet ; 52(12): 1384-1396, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33139953

RESUMO

Trimethylated histone H3 lysine 27 (H3K27me3) regulates gene repression, cell-fate determination and differentiation. We report that a conserved bromo-adjacent homology (BAH) module of BAHCC1 (BAHCC1BAH) 'recognizes' H3K27me3 specifically and enforces silencing of H3K27me3-demarcated genes in mammalian cells. Biochemical, structural and integrated chromatin immunoprecipitation-sequencing-based analyses demonstrate that direct readout of H3K27me3 by BAHCC1 is achieved through a hydrophobic trimethyl-L-lysine-binding 'cage' formed by BAHCC1BAH, mediating colocalization of BAHCC1 and H3K27me3-marked genes. BAHCC1 is highly expressed in human acute leukemia and interacts with transcriptional corepressors. In leukemia, depletion of BAHCC1, or disruption of the BAHCC1BAH-H3K27me3 interaction, causes derepression of H3K27me3-targeted genes that are involved in tumor suppression and cell differentiation, leading to suppression of oncogenesis. In mice, introduction of a germline mutation at Bahcc1 to disrupt its H3K27me3 engagement causes partial postnatal lethality, supporting a role in development. This study identifies an H3K27me3-directed transduction pathway in mammals that relies on a conserved BAH 'reader'.


Assuntos
Carcinogênese/genética , Código das Histonas/genética , Histonas/metabolismo , Leucemia/genética , Proteínas/genética , Proteínas/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica/genética , Inativação Gênica/fisiologia , Células HEK293 , Células HeLa , Humanos , Células Jurkat , Leucemia/patologia , Metilação , Camundongos , Camundongos Transgênicos , Transplante de Neoplasias , Processamento de Proteína Pós-Traducional/genética , Transplante Heterólogo
14.
Biochem Biophys Res Commun ; 533(3): 467-473, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32977949

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by 2019 novel coronavirus (2019-nCoV) has been a crisis of global health, whereas the effective vaccines against 2019-nCoV are still under development. Alternatively, utilization of old drugs or available medicine that can suppress the viral activity or replication may provide an urgent solution to suppress the rapid spread of 2019-nCoV. Andrographolide is a highly abundant natural product of the medicinal plant, Andrographis paniculata, which has been clinically used for inflammatory diseases and anti-viral therapy. We herein demonstrate that both andrographolide and its fluorescent derivative, the nitrobenzoxadiazole-conjugated andrographolide (Andro- NBD), suppressed the main protease (Mpro) activities of 2019-nCoV and severe acute respiratory syndrome coronavirus (SARS-CoV). Moreover, Andro-NBD was shown to covalently link its fluorescence to these proteases. Further mass spectrometry (MS) analysis suggests that andrographolide formed a covalent bond with the active site Cys145 of either 2019-nCoV Mpro or SARS-CoV Mpro. Consistently, molecular modeling analysis supported the docking of andrographolide within the catalytic pockets of both viral Mpros. Considering that andrographolide is used in clinical practice with acceptable safety and its diverse pharmacological activities that could be beneficial for attenuating COVID-19 symptoms, extensive investigation of andrographolide on the suppression of 2019-nCoV as well as its application in COVID-19 therapy is suggested.


Assuntos
Cisteína Endopeptidases/metabolismo , Diterpenos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Betacoronavirus/enzimologia , Domínio Catalítico , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Diterpenos/química , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Simulação de Acoplamento Molecular , Conformação Proteica , Multimerização Proteica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , SARS-CoV-2 , Proteínas não Estruturais Virais/química
15.
Proc Natl Acad Sci U S A ; 117(27): 15702-15711, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32576691

RESUMO

Mammalian cells contain two isoforms of RNA polymerase III (Pol III) that differ in only a single subunit, with POLR3G in one form (Pol IIIα) and the related POLR3GL in the other form (Pol IIIß). Previous research indicates that POLR3G and POLR3GL are differentially expressed, with POLR3G expression being highly enriched in embryonic stem cells (ESCs) and tumor cells relative to the ubiquitously expressed POLR3GL. To date, the functional differences between these two subunits remain largely unexplored, especially in vivo. Here, we show that POLR3G and POLR3GL containing Pol III complexes bind the same target genes and assume the same functions both in vitro and in vivo and, to a significant degree, can compensate for each other in vivo. Notably, an observed defect in the differentiation ability of POLR3G knockout ESCs can be rescued by exogenous expression of POLR3GL. Moreover, whereas POLR3G knockout mice die at a very early embryonic stage, POLR3GL knockout mice complete embryonic development without noticeable defects but die at about 3 wk after birth with signs of both general growth defects and potential cerebellum-related neuronal defects. The different phenotypes of the knockout mice likely reflect differential expression levels of POLR3G and POLR3GL across developmental stages and between tissues and insufficient amounts of total Pol III in vivo.


Assuntos
Cerebelo/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Neurônios/metabolismo , RNA Polimerase III/genética , Animais , Sítios de Ligação/genética , Diferenciação Celular/genética , Cerebelo/patologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Camundongos Knockout , Neurônios/patologia , Ligação Proteica/genética , Isoformas de Proteínas/genética , Subunidades Proteicas/genética
16.
Blood ; 136(1): 11-23, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32276273

RESUMO

E2A, a basic helix-loop-helix transcription factor, plays a crucial role in determining tissue-specific cell fate, including differentiation of B-cell lineages. In 5% of childhood acute lymphoblastic leukemia (ALL), the t(1,19) chromosomal translocation specifically targets the E2A gene and produces an oncogenic E2A-PBX1 fusion protein. Although previous studies have shown the oncogenic functions of E2A-PBX1 in cell and animal models, the E2A-PBX1-enforced cistrome, the E2A-PBX1 interactome, and related mechanisms underlying leukemogenesis remain unclear. Here, by unbiased genomic profiling approaches, we identify the direct target sites of E2A-PBX1 in t(1,19)-positive pre-B ALL cells and show that, compared with normal E2A, E2A-PBX1 preferentially binds to a subset of gene loci cobound by RUNX1 and gene-activating machineries (p300, MED1, and H3K27 acetylation). Using biochemical analyses, we further document a direct interaction of E2A-PBX1, through a region spanning the PBX1 homeodomain, with RUNX1. Our results also show that E2A-PBX1 binding to gene enhancers is dependent on the RUNX1 interaction but not the DNA-binding activity harbored within the PBX1 homeodomain of E2A-PBX1. Transcriptome analyses and cell transformation assays further establish a significant RUNX1 requirement for E2A-PBX1-mediated target gene activation and leukemogenesis. Notably, the RUNX1 locus itself is also directly activated by E2A-PBX1, indicating a multilayered interplay between E2A-PBX1 and RUNX1. Collectively, our study provides the first unbiased profiling of the E2A-PBX1 cistrome in pre-B ALL cells and reveals a previously unappreciated pathway in which E2A-PBX1 acts in concert with RUNX1 to enforce transcriptome alterations for the development of pre-B ALL.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Regulação Leucêmica da Expressão Gênica/genética , Proteínas de Homeodomínio/fisiologia , Proteínas de Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/fisiologia , Motivos de Aminoácidos , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Subunidade alfa 2 de Fator de Ligação ao Core/química , Subunidade alfa 2 de Fator de Ligação ao Core/genética , DNA/metabolismo , Elementos Facilitadores Genéticos , Código das Histonas , Proteínas de Homeodomínio/química , Humanos , Complexo Mediador/metabolismo , Proteínas de Fusão Oncogênica/química , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Domínios Proteicos , Mapeamento de Interação de Proteínas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Relação Estrutura-Atividade , Transcriptoma , Fatores de Transcrição de p300-CBP/metabolismo
17.
Oncol Rep ; 42(3): 1194-1204, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31322249

RESUMO

Upregulation of the Big mitogen­activated protein kinase (BMK)1 has been reported in glioma and other epithelial tumors. In addition, the decreased expression of BMK1 inhibits tumorigenesis, leading to the broad consensus that it functions as cell­autonomous epithelial tumor promoter. Using two online miRNA target prediction databases, microRNA (miR)­143 was predicted as the potential miRNA regulator of BMK1. RNA immunoprecipitation analysis and Luciferase reporter assay showed that miR­143 binds to the 3' untranslated region of BMK1. Notably, the expression of miR­143 has a strong association with the World Health Organization grade and survival rates in patients with glioma by statistical analysis. Furthermore, miR­143 inhibited glioma cells migration and invasion through cytoskeletal rearrangement in vitro and in vivo through matrigel invasion assay, scratch assay, cellular F­actin measurement, chemotaxis assay and intracranial brain tumor xenografts. Finally, DNA methylation assay showed that the downregulation of miR­143 was due to hypermethylation of its promoter region. These results reveal that miR­143 represents a potential therapeutic target in glioma by modulating BMK1.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , MicroRNAs/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Adulto , Idoso , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Movimento Celular , Proliferação de Células , Metilação de DNA , Feminino , Glioma/genética , Glioma/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Quinase 7 Ativada por Mitógeno/genética , Invasividade Neoplásica , Prognóstico , Ratos , Ratos Sprague-Dawley , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Mol Cell ; 74(2): 268-283.e5, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30902546

RESUMO

Linker histone H1 has been correlated with transcriptional inhibition, but the mechanistic basis of the inhibition and its reversal during gene activation has remained enigmatic. We report that H1-compacted chromatin, reconstituted in vitro, blocks transcription by abrogating core histone modifications by p300 but not activator and p300 binding. Transcription from H1-bound chromatin is elicited by the H1 chaperone NAP1, which is recruited in a gene-specific manner through direct interactions with activator-bound p300 that facilitate core histone acetylation (by p300) and concomitant eviction of H1 and H2A-H2B. An analysis in B cells confirms the strong dependency on NAP1-mediated H1 eviction for induction of the silent CD40 gene and further demonstrates that H1 eviction, seeded by activator-p300-NAP1-H1 interactions, is propagated over a CCCTC-binding factor (CTCF)-demarcated region through a distinct mechanism that also involves NAP1. Our results confirm direct transcriptional inhibition by H1 and establish a gene-specific H1 eviction mechanism through an activator→p300→NAP1→H1 pathway.


Assuntos
Fator de Ligação a CCCTC/genética , Proteína p300 Associada a E1A/genética , Proteínas/genética , Transcrição Gênica , Acetilação , Linfócitos B/química , Sítios de Ligação , Fator de Ligação a CCCTC/química , Antígenos CD40/genética , Cromatina/química , Cromatina/genética , Proteína p300 Associada a E1A/química , Código das Histonas , Histonas/química , Histonas/genética , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Nucleossomos/química , Nucleossomos/genética , Regiões Promotoras Genéticas , Ligação Proteica/genética , Proteínas/química , tRNA Metiltransferases
19.
Dev Cell ; 48(2): 184-199.e5, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30695697

RESUMO

During cerebellar development, granule neuron progenitors (GNPs) proliferate by transducing Sonic Hedgehog (SHH) signaling via the primary cilium. Precise regulation of ciliogenesis, thus, ensures proper GNP pool expansion. Here, we report that Atoh1, a transcription factor required for GNPs formation, controls the presence of primary cilia, maintaining GNPs responsiveness to SHH. Loss of primary cilia abolishes the ability of Atoh1 to keep GNPs in a proliferative state. Mechanistically, Atoh1 promotes ciliogenesis by transcriptionally regulating Cep131, which facilitates centriolar satellite (CS) clustering to the basal body. Importantly, ectopic expression of Cep131 counteracts the effects of Atoh1 loss in GNPs by restoring proper localization of CS and ciliogenesis. This Atoh1-CS-primary cilium-SHH pro-proliferative pathway is also conserved in SHH-type medulloblastoma, a pediatric brain tumor arising from the GNPs. Together, our data reveal how Atoh1 modulates the primary cilium to regulate GNPs development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Neurônios/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Neoplasias Cerebelares/metabolismo , Meduloblastoma/metabolismo , Camundongos Transgênicos , Neurogênese
20.
Am J Cancer Res ; 8(12): 2548-2563, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30662811

RESUMO

We stratified pancreatic ductal adenocarcinoma (PDAC) based on the tumorigenic properties of cancer cells, and aimed to identify clinically useful immunohistochemical (IHC) markers with mechanistic insights. The tumorigenic properties of PDACs were determined using patient-derived xenograft in NOD/SCID/IL2Rγnull mice. The success of tumor engraftment was significantly correlated to poor survival, and its predictive values were superior to clinicopathological parameters. To search IHC-based biomarkers as surrogate for high tumorigenicity with prognostic values, 11 candidates of potentially clinical useful prognostic markers were selected. Among them, 5hmC content of the cancer cells was validated. Elevated 5hmC content positively correlated with in vivo tumorigenicity and poor prognosis in both primary and validation cohorts. Enrichment of cancer-associated 5hmC in CDX2 and FOXA1 lineage-specific transcriptional factor genes further pointed out the potential role of 5hmC in modulating cellular differentiation to enhance tumor malignancy during PDAC progression. Tumor-associated 5hmC content defined a subpopulation of PDAC with high lineage plasticity and tumorigenic potential, and was a prognostic IHC marker that provided a clinical basis for future management of PDAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA