Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
FASEB J ; 38(13): e23751, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38923701

RESUMO

Mesenchymal stem cells (MSCs) reveal multifaceted immunoregulatory properties, which can be applied for diverse refractory and recurrent disease treatment including acute graft-versus-host disease (aGVHD). Distinguishing from MSCs with considerable challenges before clinical application, MSCs-derived exosomes (MSC-Exos) are cell-free microvesicles with therapeutic ingredients and serve as advantageous alternatives for ameliorating the outcomes of aGVHD. MSC-Exos were enriched and identified by western blotting analysis, NanoSight, and transmission electron microscopy (TEM). Bone marrow-derived MSCs (denoted as MSCs) and exosomes (denoted as MSC-Exos) were infused into the aGVHD SD-Wister rat model via tail vein, and variations in general growth and survival of rats were observed. The level of inflammatory factors in serum was quantized by enzyme-linked immunosorbent assay (ELISA). The pathological conditions of the liver and intestine of rats were observed by frozen sectioning. The ratios of CD4+/CD8+ and Treg cell proportions in peripheral blood, together with the autophagy in the spleen and thymus, were analyzed by flow cytometry. After treatment with MSC-Exos, the survival time of aGVHD rats was prolonged, the clinical manifestations of aGVHD in rats were improved, whereas the pathological damage of aGVHD in the liver and intestine was reduced. According to ELISA, we found that MSC-Exos revealed ameliorative effect upon aGVHD inflammation (e.g., TNF-α, IL-2, INF-γ, IL-4, and TGF-ß) compared to the MSC group. After MSC-Exo treatment, the ratio of Treg cells in peripheral blood was increased, whereas the ratio of CD4+/CD8+ in peripheral blood and the autophagy in the spleen and thymus was decreased. MSC-Exos effectively suppressed the activation of immune cells and the manifestation of the inflammatory response in the aGVHD rat model. Our data would supply new references for MSC-Exo-based "cell-free" biotherapy for aGVHD in future.


Assuntos
Exossomos , Doença Enxerto-Hospedeiro , Células-Tronco Mesenquimais , Animais , Exossomos/metabolismo , Doença Enxerto-Hospedeiro/terapia , Ratos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Ratos Wistar , Masculino , Ratos Sprague-Dawley , Transplante de Células-Tronco Mesenquimais/métodos , Linfócitos T Reguladores/imunologia , Células da Medula Óssea/citologia , Autofagia
2.
J Exp Clin Cancer Res ; 43(1): 163, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863037

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer subtype often treated with radiotherapy (RT). Due to its intrinsic heterogeneity and lack of effective targets, it is crucial to identify novel molecular targets that would increase RT efficacy. Here we demonstrate the role of BUB1 (cell cycle Ser/Thr kinase) in TNBC radioresistance and offer a novel strategy to improve TNBC treatment. METHODS: Gene expression analysis was performed to look at genes upregulated in TNBC patient samples compared to other subtypes. Cell proliferation and clonogenic survivals assays determined the IC50 of BUB1 inhibitor (BAY1816032) and radiation enhancement ratio (rER) with pharmacologic and genomic BUB1 inhibition. Mammary fat pad xenografts experiments were performed in CB17/SCID. The mechanism through which BUB1 inhibitor sensitizes TNBC cells to radiotherapy was delineated by γ-H2AX foci assays, BLRR, Immunoblotting, qPCR, CHX chase, and cell fractionation assays. RESULTS: BUB1 is overexpressed in BC and its expression is considerably elevated in TNBC with poor survival outcomes. Pharmacological or genomic ablation of BUB1 sensitized multiple TNBC cell lines to cell killing by radiation, although breast epithelial cells showed no radiosensitization with BUB1 inhibition. Kinase function of BUB1 is mainly accountable for this radiosensitization phenotype. BUB1 ablation also led to radiosensitization in TNBC tumor xenografts with significantly increased tumor growth delay and overall survival. Mechanistically, BUB1 ablation inhibited the repair of radiation-induced DNA double strand breaks (DSBs). BUB1 ablation stabilized phospho-DNAPKcs (S2056) following RT such that half-lives could not be estimated. In contrast, RT alone caused BUB1 stabilization, but pre-treatment with BUB1 inhibitor prevented stabilization (t1/2, ~8 h). Nuclear and chromatin-enriched fractionations illustrated an increase in recruitment of phospho- and total-DNAPK, and KAP1 to chromatin indicating that BUB1 is indispensable in the activation and recruitment of non-homologous end joining (NHEJ) proteins to DSBs. Additionally, BUB1 staining of TNBC tissue microarrays demonstrated significant correlation of BUB1 protein expression with tumor grade. CONCLUSIONS: BUB1 ablation sensitizes TNBC cell lines and xenografts to RT and BUB1 mediated radiosensitization may occur through NHEJ. Together, these results highlight BUB1 as a novel molecular target for radiosensitization in women with TNBC.


Assuntos
Reparo do DNA por Junção de Extremidades , Proteínas Serina-Treonina Quinases , Tolerância a Radiação , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/radioterapia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Animais , Feminino , Camundongos , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Camundongos SCID
3.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766122

RESUMO

Background: Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer subtype often treated with radiotherapy (RT). Due to its intrinsic heterogeneity and lack of effective targets, it is crucial to identify novel molecular targets that would increase RT efficacy. Here we demonstrate the role of BUB1 (cell cycle Ser/Thr kinase) in TNBC radioresistance and offer a novel strategy to improve TNBC treatment. Methods: Gene expression analysis was performed to look at genes upregulated in TNBC patient samples compared to other subtypes. Cell proliferation and clonogenic survivals assays determined the IC 50 of BUB1 inhibitor (BAY1816032) and radiation enhancement ratio (rER) with pharmacologic and genomic BUB1 inhibition. Mammary fat pad xenografts experiments were performed in CB17/SCID. The mechanism through which BUB1 inhibitor sensitizes TNBC cells to radiotherapy was delineated by γ-H2AX foci assays, BLRR, Immunoblotting, qPCR, CHX chase, and cell fractionation assays. Results: BUB1 is overexpressed in BC and its expression is considerably elevated in TNBC with poor survival outcomes. Pharmacological or genomic ablation of BUB1 sensitized multiple TNBC cell lines to cell killing by radiation, although breast epithelial cells showed no radiosensitization with BUB1 inhibition. Kinase function of BUB1 is mainly accountable for this radiosensitization phenotype. BUB1 ablation also led to radiosensitization in TNBC tumor xenografts with significantly increased tumor growth delay and overall survival. Mechanistically, BUB1 ablation inhibited the repair of radiation-induced DNA double strand breaks (DSBs). BUB1 ablation stabilized phospho-DNAPKcs (S2056) following RT such that half-lives could not be estimated. In contrast, RT alone caused BUB1 stabilization, but pre-treatment with BUB1 inhibitor prevented stabilization (t 1/2 , ∼8 h). Nuclear and chromatin-enriched fractionations illustrated an increase in recruitment of phospho- and total-DNAPK, and KAP1 to chromatin indicating that BUB1 is indispensable in the activation and recruitment of non-homologous end joining (NHEJ) proteins to DSBs. Additionally, BUB1 staining of TNBC tissue microarrays demonstrated significant correlation of BUB1 protein expression with tumor grade. Conclusions: BUB1 ablation sensitizes TNBC cell lines and xenografts to RT and BUB1 mediated radiosensitization may occur through NHEJ. Together, these results highlight BUB1 as a novel molecular target for radiosensitization in women with TNBC.

4.
PLoS One ; 19(5): e0297137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722851

RESUMO

BACKGROUND: Inhaled nitric oxide (iNO) has a beneficial effect on hypoxemic respiratory failure. The increased use of concurrent iNO and milrinone was observed. We aimed to report the trends of iNO use in the past 15 years in Taiwan and compare the first-year outcomes of combining iNO and milrinone to the iNO alone in very low birth weight preterm (VLBWP) infants under mechanical ventilation. METHODS: This nationwide cohort study enrolled preterm singleton infants with birth weight <1500g treated with iNO from 2004 to 2019. Infants were divided into two groups, with a combination of intravenous milrinone (Group 2, n = 166) and without milrinone (Group 1, n = 591). After propensity score matching (PSM), each group's sample size is 124. The primary outcomes were all-cause mortality and the respiratory condition, including ventilator use and duration. The secondary outcomes were preterm morbidities within one year after birth. RESULTS: After PSM, more infants in Group 2 needed inotropes. The mortality rate was significantly higher in Group 2 than in Group 1 from one month after birth till 1 year of age (55.1% vs. 13.5%) with the adjusted hazard ratio of 4.25 (95%CI = 2.42-7.47, p <0.001). For infants who died before 36 weeks of postmenstrual age (PMA), Group 2 had longer hospital stays compared to Group 1. For infants who survived after 36 weeks PMA, the incidence of moderate and severe bronchopulmonary dysplasia (BPD) was significantly higher in Group 2 than in Group 1. For infants who survived until one year of age, the incidence of pneumonia was significantly higher in Group 2 (28.30%) compared to Group 1 (12.62%) (p = 0.0153). CONCLUSION: Combined treatment of iNO and milrinone is increasingly applied in VLBWP infants in Taiwan. This retrospective study did not support the benefits of combining iNO and milrinone on one-year survival and BPD prevention. A future prospective study is warranted.


Assuntos
Recém-Nascido de muito Baixo Peso , Milrinona , Óxido Nítrico , Humanos , Milrinona/administração & dosagem , Milrinona/uso terapêutico , Recém-Nascido , Óxido Nítrico/administração & dosagem , Óxido Nítrico/uso terapêutico , Masculino , Administração por Inalação , Feminino , Estudos Retrospectivos , Taiwan/epidemiologia , Recém-Nascido Prematuro , Insuficiência Respiratória/tratamento farmacológico , Insuficiência Respiratória/mortalidade , Lactente , Respiração Artificial , Resultado do Tratamento , Hipóxia/tratamento farmacológico
5.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38397002

RESUMO

Ferroptosis, a unique form of programmed cell death trigged by lipid peroxidation and iron accumulation, has been implicated in embryonic erythropoiesis and aging. Our previous research demonstrated that lysophosphatidic acid receptor 3 (LPA3) activation mitigated oxidative stress in progeria cells and accelerated the recovery of acute anemia in mice. Given that both processes involve iron metabolism, we hypothesized that LPA3 activation might mediate cellular ferroptosis. In this study, we used an LPA3 agonist, 1-Oleoyl-2-O-methyl-rac-glycerophosphothionate (OMPT), to activate LPA3 and examine its effects on the ferroptosis process. OMPT treatment elevated anti-ferroptosis gene protein expression, including solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), heme oxygenase-1 (HO-1), and ferritin heavy chain (FTH1), in erastin-induced cells. Furthermore, OMPT reduced lipid peroxidation and intracellular ferrous iron accumulation, as evidenced by C11 BODIPY™ 581/591 Lipid Peroxidation Sensor and FerroOrange staining. These observations were validated by applying LPAR3 siRNA in the experiments mentioned above. In addition, the protein expression level of nuclear factor erythroid 2-related factor (NRF2), a key regulator of oxidative stress, was also enhanced in OMPT-treated cells. Lastly, we verified that LPA3 plays a critical role in erastin-induced ferroptotic human erythroleukemia K562 cells. OMPT rescued the erythropoiesis defect caused by erastin in K562 cells based on a Gly A promoter luciferase assay. Taken together, our findings suggest that LPA3 activation inhibits cell ferroptosis by suppressing lipid oxidation and iron accumulation, indicating that ferroptosis could potentially serve as a link among LPA3, erythropoiesis, and aging.


Assuntos
Ferroptose , Receptores de Ácidos Lisofosfatídicos , Camundongos , Animais , Humanos , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Apoptose , Estresse Oxidativo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ferro/metabolismo
6.
Adv Sci (Weinh) ; 11(4): e2306391, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38044299

RESUMO

Reversible optical property changes in lead-free perovskites have recently received great interest due to their potential applications in smart windows, sensors, data encryption, and various on-demand devices. However, it is challenging to achieve remarkable color changes in their thin films. Here, methylamine gas (CH3 NH2 , MA0 ) induced switchable optical bleaching of bismuth (Bi)-based perovskite films is demonstrated for the first time. By exposure to an MA0 atmosphere, the color of Cs2 AgBiBr6 (CABB) films changes from yellow to transparent, and the color of Cs3 Bi2 I9 (CBI) films changes from dark red to transparent. More interestingly, the underlying reason is found to be the interactions between MA0 and Bi3+ with the formation of an amorphous liquefied transparent intermediate phase, which is different from that of lead-based perovskite systems. Moreover, the generality of this approach is demonstrated with other amine gases, including ethylamine (C2 H5 NH2 , EA0 ) and butylamine (CH3 (CH2 )3 NH2 , BA0 ), and another compound, Cs3 Sb2 I9 , by observing a similar reversible optical bleaching phenomenon. The potential for the application of CABB and CBI films in switchable smart windows is investigated. This study provides valuable insights into the interactions between amine gases and lead-free perovskites, opening up new possibilities for high-efficiency optoelectronic and stimuli-responsive applications of these emerging Bi-based materials.

7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(6): 1714-1719, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38071050

RESUMO

OBJECTIVE: To explore the short-term efficacy and adverse reactions of orelabrutinib combined with high-dose methotrexate (HD-MTX) in the first-line treatment of elderly high-risk primary central nervous system lymphoma (PCNSL), as well as the survival of patients. METHODS: Twenty-five elderly patients with high-risk primary central nervous system diffuse large B-cell lymphoma admitted to Fujian Provincial Hospital from June 2016 to June 2022 were enrolled in this study, and complete clinical data from all patients were collected retrospectively, and the cut-off for follow-up was December 2022. 15 patients had received temmozolomide combined with HD-MTX regimen for at least four cycles, sequential lenalidomide maintenance therapy, while 10 patients had received orelabrutinib combined with HD-MTX regimen for at least four cycles, sequential orelabrutinib maintenance therapy. The short-term efficacy and adverse reactions of the two groups of patients after treatment were observed. Kaplan-Meier was used to analyze the progression-free survival (PFS) and time to progression (TTP). RESULTS: The objective response rate (ORR) and 2-year median FPS of orelabrutinib combined with HD-MTX regimen group were similar to the temozolomide combined with HD-MTX regimen group (ORR: 100% vs 66.7%; 2-year median PFS: 16 months vs 15 months, P>0.05). The 2-year median TTP of the orelabrutinib+HD-MTX regimen group was better than that of the temozolomide+HD-MTX regimen group (not reached vs 12 months, P<0.05). There were no significant differences in adverse reactions such as gastrointestinal reactions, bone marrow suppression, liver and kidney damage, cardiotoxicity, pneumonia and bleeding between these two groups (P>0.05). CONCLUSION: For elderly patients with high-risk PCNSL, orelabrutinib combined with HD-MTX has reliable short-term efficacy, good safety, and tolerable adverse reactions, which is worthy of clinical promotion.


Assuntos
Neoplasias do Sistema Nervoso Central , Linfoma Difuso de Grandes Células B , Humanos , Idoso , Metotrexato/efeitos adversos , Estudos Retrospectivos , Temozolomida/uso terapêutico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Sistema Nervoso Central
8.
J Bone Oncol ; 43: 100508, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38021075

RESUMO

Background and Objective: Bone tumors present significant challenges in orthopedic medicine due to variations in clinical treatment approaches for different tumor types, which includes benign, malignant, and intermediate cases. Convolutional Neural Networks (CNNs) have emerged as prominent models for tumor classification. However, their limited perception ability hinders the acquisition of global structural information, potentially affecting classification accuracy. To address this limitation, we propose an optimized deep learning algorithm for precise classification of diverse bone tumors. Materials and Methods: Our dataset comprises 786 computed tomography (CT) images of bone tumors, featuring sections from two distinct bone species, namely the tibia and femur. Sourced from The Second Affiliated Hospital of Fujian Medical University, the dataset was meticulously preprocessed with noise reduction techniques. We introduce a novel fusion model, VGG16-ViT, leveraging the advantages of the VGG-16 network and the Vision Transformer (ViT) model. Specifically, we select 27 features from the third layer of VGG-16 and input them into the Vision Transformer encoder for comprehensive training. Furthermore, we evaluate the impact of secondary migration using CT images from Xiangya Hospital for validation. Results: The proposed fusion model demonstrates notable improvements in classification performance. It effectively reduces the training time while achieving an impressive classification accuracy rate of 97.6%, marking a significant enhancement of 8% in sensitivity and specificity optimization. Furthermore, the investigation into secondary migration's effects on experimental outcomes across the three models reveals its potential to enhance system performance. Conclusion: Our novel VGG-16 and Vision Transformer joint network exhibits robust classification performance on bone tumor datasets. The integration of these models enables precise and efficient classification, accommodating the diverse characteristics of different bone tumor types. This advancement holds great significance for the early detection and prognosis of bone tumor patients in the future.

9.
Front Oncol ; 13: 1162846, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023248

RESUMO

Background: Hypoxia and metabolism are closely correlated with the progression of cancer. We aimed to construct a combined hypoxia- and metabolism-related genes (HMRGs) prognostic signature to predict survival and immunotherapy responses in patients with clear cell renal cell carcinoma (ccRCC). Methods: The RNA-seq profiles and clinical data of ccRCC were acquired from the TCGA and the ArrayExpress (E-MTAB-1980) databases. Least absolute shrinkage and selection operator (LASSO) and univariate and multivariate Cox regression analyses were applied to establish a prognostic signature. The E-MTAB-1980 cohort was selected for validation. The effectiveness and reliability of the signature were further evaluated by Kaplan-Meier (K-M) survival and time-dependent receiver operating characteristic (ROC) curves. Further analyses, including functional enrichment, ssGSEA algorithm, CIBERSORT algorithm, and expression of immune checkpoints, were explored to investigate immune status and immunotherapy responses. Results: We constructed a prognostic eight-gene signature with IRF6, TEK, PLCB2, ABCB1, TGFA, COL4A5, PLOD2, and TUBB6. Patients were divided into high-risk and low-risk groups based on the medium-risk score. The K-M analysis revealed that patients in the high-risk group had an apparently poor prognosis compared to those in the low-risk group in the TCGA (p < 0.001) and E-MTAB-1980 (p < 0.005). The area under ROC curve (AUC) of the prognostic signature was 0.8 at 1 year, 0.77 at 3 years, and 0.78 at 5 years in the TCGA, respectively, and was 0.82 at 1 year, 0.74 at 3 years, and 0.75 at 5 years in the E-MTAB-1980, respectively. Independent prognostic analysis confirmed the risk score as a separate prognostic factor in ccRCC patients (p < 0.001). The results of ssGSEA showed not only a high degree of immune cell infiltration but also high scores of immune-related functions in the high-risk group. The CIBERSORT analysis further confirmed that the abundance of immune cells was apparently different between the two risk groups. The risk score was significantly correlated with the expression of cytotoxic T lymphocyte-associated antigen-4 (CTLA4), lymphocyte-activation gene 3 (LAG3), and programmed cell death protein 1 (PD-1). Conclusion: The HMRGs signature could be used to predict clinical prognosis, evaluate the efficacy of immunotherapy, and guide personalized immunotherapy in ccRCC patients.

10.
Arch Med Sci ; 19(5): 1530-1537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37732040

RESUMO

Introduction: To examine the anti-cancer effects of berberine on multiple cancer cell lines, and to clarify the underlying molecular mechanisms. Material and methods: The IC50 values for the action of berberine on Tca8113 (oral squamous cell carcinoma), CNE2 (nasopharyngeal carcinoma cell), MCF-7 (breast cancer), Hela (cervical carcinoma), and HT29 (colon cancer) cells were determined by MTT cell viability assay. Early apoptosis and cell cycle arrest were examined by flow cytometry with annexin V and propidium iodide (PI) staining, respectively. For expression of BAX and BCL-2 genes and proteins were detected by real-time PCR and western blotting, respectively. Results: Berberine displayed a cytotoxic effect on all the cell lines tested. The IC50 values were determined (Tca8113, 218.52 ±18.71; CNE2, 249.18 ±18.14; MCF-7, 272.15 ±11.06; Hela, 245.18 ±17.33; and HT29, 52.37 ±3.45). PI staining revealed that berberine treatment resulted in cell cycle arrest at G2/M. The treatment also induced early apoptosis as shown by annexin V staining. In addition, berberine significant elevated gene and protein expression of BAX, which was accompanied by substantial decreases in BCL-2 gene and protein levels. The effects of berberine on BAX and BCL-2 were time-dependent. Conclusions: Berberine exhibited cytotoxic effects on multiple cancer cell lines by inducing apoptosis and cell cycle arrest. The BCL-2/BAX signaling pathway may be the common pathway underlying the anti-tumor effect of berberine. The findings support the notion that berberine is a dietary compound that can be further developed into a drug candidate for cancer treatment.

11.
Front Oncol ; 13: 1184841, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601683

RESUMO

Background: Oxidative stress plays a significant role in the tumorigenesis and progression of tumors. We aimed to develop a prognostic signature using oxidative stress-related genes (ORGs) to predict clinical outcome and provide light on the immunotherapy responses of clear cell renal cell carcinoma (ccRCC). Methods: The information of ccRCC patients were collected from the TCGA and the E-MTAB-1980 datasets. Univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) were conducted to screen out overall survival (OS)-related genes. Then, an ORGs risk signature was built by multivariate Cox regression analyses. The performance of the risk signature was evaluated with Kaplan-Meier (K-M) survival. The ssGSEA and CIBERSORT algorithms were performed to evaluate immune infiltration status. Finally, immunotherapy responses was analyzed based on expression of several immune checkpoints. Results: A prognostic 9-gene signature with ABCB1, AGER, E2F1, FOXM1, HADH, ISG15, KCNMA1, PLG, and TEK. The patients in the high risk group had apparently poor survival (TCGA: p < 0.001; E-MTAB-1980: p < 0.001). The AUC of the signature was 0.81 at 1 year, 0.76 at 3 years, and 0.78 at 5 years in the TCGA, respectively, and was 0.8 at 1 year, 0.82 at 3 years, and 0.83 at 5 years in the E-MTAB-1980, respectively. Independent prognostic analysis proved the stable clinical prognostic value of the signature (TCGA cohort: HR = 1.188, 95% CI =1.142-1.236, p < 0.001; E-MTAB-1980 cohort: HR =1.877, 95% CI= 1.377-2.588, p < 0.001). Clinical features correlation analysis proved that patients in the high risk group were more likely to have a larger range of clinical tumor progression. The ssGSEA and CIBERSORT analysis indicated that immune infiltration status were significantly different between two risk groups. Finally, we found that patients in the high risk group tended to respond more actively to immunotherapy. Conclusion: We developed a robust prognostic signature based on ORGs, which may contribute to predict survival and guide personalize immunotherapy of individuals with ccRCC.

12.
J Fungi (Basel) ; 9(6)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37367593

RESUMO

Phosphatidylethanolamine-binding protein (PEBP) is widely involved in various physiological behaviors, such as the transition from vegetative growth to reproductive growth in plants, tumorigenesis in the human, etc. However, few functional studies have examined pebp genes affecting the development of fungi. In this study, Capebp2 was cloned from Cyclocybe aegerita AC0007 strains based on the genome sequence and gene prediction, and the sequence alignment of CaPEBP2 with other PEBP proteins from other biological sources including plant, animal, fungi, and bacteria indicated that PEBP had low sequence similarity in fungi, whereas all protein sequences had some conserved motifs such as DPDAP and HRY. Expression analysis showed the transcription level of Capebp2 increased approximately 20-fold in fruiting bodies compared with mycelia. To uncover the function of Capebp2 in C. aegetita development, Capebp2 was cloned into a pATH vector driven by the actin promoter for obtaining overexpression transformant lines. Fruiting experiments showed the transformed strains overexpressing Capebp2 exhibited redifferentiation of the cap on their surface, including intact fruiting bodies or partial lamella during fruiting development stage, and the longitudinal section indicated that all regenerated bodies or lamella sprouted from the flesh and shared the epidermis with the mother fruiting bodies. In summary, the sequence characterization of Capebp2, expression level during different development stages, and function on fruiting body development were documented in this study, and these findings provided a reference to study the role of pebp in the development process of basidiomycetes. Importantly, gene mining of pebp, function characterization, and the regulating pathways involved need to be uncovered in further studies.

13.
ISME J ; 17(8): 1257-1266, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37253970

RESUMO

Atmospheric trace gases, such as H2 and CO, are important energy sources for microbial growth and maintenance in various ecosystems, especially in arid deserts with little organic substrate. Nonetheless, the impact of soil organic C availability on microbial trace gas oxidation and the underlying mechanisms are unclear at the community level. This study investigated the energy and life-history strategies of soil microbiomes along an organic C gradient inside and out of Hedysarum scoparium islands dispersed in the Mu Us Desert, China. Metagenomic analysis showed that with increasing organic C availability from bare areas into "fertile islands", the abundance of trace gas oxidizers (TGOs) decreased, but that of trace gas nonoxidizers (TGNOs) increased. The variation in their abundance was more related to labile/soluble organic C levels than to stable/insoluble organic C levels. The consumption rates of H2 and CO confirmed that organic C addition, especially soluble organic C addition, inhibited microbial trace gas oxidation. Moreover, microorganisms with distinct energy-acquiring strategies showed different life-history traits. The TGOs had lower 16 S rRNA operon copy numbers, lower predicted maximum growth rates and higher proportions of labile C degradation genes, implying the prevalence of oligotrophs. In contrast, copiotrophs were prevalent in the TGNOs. These results revealed a mechanism for the microbial community to adapt to the highly heterogeneous distribution of C resources by adjusting the abundances of taxa with distinct energy and life-history strategies, which would further affect trace gas consumption and C turnover in desert ecosystems.


Assuntos
Carbono , Ecossistema , Carbono/análise , Gases/análise , Solo/química , Microbiologia do Solo
14.
Leukemia ; 37(7): 1421-1434, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37157016

RESUMO

Internal tandem duplication (ITD) mutations within the FMS-like tyrosine kinase-3 (FLT3) occur in up to 25% of acute myeloid leukemia (AML) patients and indicate a very poor prognosis. The role of long noncoding RNAs (lncRNAs) in FLT3-ITD AML progression remains unexplored. We identified a novel lncRNA, SNHG29, whose expression is specifically regulated by the FLT3-STAT5 signaling pathway and is abnormally down-regulated in FLT3-ITD AML cell lines. SNHG29 functions as a tumor suppressor, significantly inhibiting FLT3-ITD AML cell proliferation and decreasing sensitivity to cytarabine in vitro and in vivo models. Mechanistically, we demonstrated that SNHG29's molecular mechanism is EP300-binding dependent and identified the EP300-interacting region of SNHG29. SNHG29 modulates genome-wide EP300 genomic binding, affecting EP300-mediated histone modification and consequently influencing the expression of varies downstream AML-associated genes. Our study uncovers a novel molecular mechanism for SNHG29 in mediating FLT3-ITD AML biological behaviors through epigenetic modification, suggesting that SNHG29 could be a potential therapeutic target for FLT3-ITD AML.


Assuntos
Leucemia Mieloide Aguda , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Histonas/genética , Histonas/metabolismo , Acetilação , Leucemia Mieloide Aguda/patologia , Mutação , Tirosina Quinase 3 Semelhante a fms/metabolismo , Proteína p300 Associada a E1A/genética
15.
EMBO J ; 42(6): e112094, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36727301

RESUMO

DNA-PKcs is a key regulator of DNA double-strand break repair. Apart from its canonical role in the DNA damage response, DNA-PKcs is involved in the cellular response to oxidative stress (OS), but its exact role remains unclear. Here, we report that DNA-PKcs-deficient human cells display depolarized mitochondria membrane potential (MMP) and reoriented metabolism, supporting a role for DNA-PKcs in oxidative phosphorylation (OXPHOS). DNA-PKcs directly interacts with mitochondria proteins ANT2 and VDAC2, and formation of the DNA-PKcs/ANT2/VDAC2 (DAV) complex supports optimal exchange of ADP and ATP across mitochondrial membranes to energize the cell via OXPHOS and to maintain MMP. Moreover, we demonstrate that the DAV complex temporarily dissociates in response to oxidative stress to attenuate ADP-ATP exchange, a rate-limiting step for OXPHOS. Finally, we found that dissociation of the DAV complex is mediated by phosphorylation of DNA-PKcs at its Thr2609 cluster by ATM kinase. Based on these findings, we propose that the coordination between the DAV complex and ATM serves as a novel oxidative stress checkpoint to decrease ROS production from mitochondrial OXPHOS and to hasten cellular recovery from OS.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ligação a DNA , Estresse Oxidativo , Humanos , Trifosfato de Adenosina/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Fosforilação
16.
Transl Oncol ; 30: 101625, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739730

RESUMO

BACKGROUND: Genome-scale CRISPR-Cas9 knockout screening may provide new insights into the mechanism underlying clinical radioresistance in nasopharyngeal carcinoma (NPC), which is remain largely unknown. Our objective was to screen the functional genes associated with radiosensitivity and radioresistance in NPC, laying a foundation for further research on its functional mechanismand. METHODS: CRISPR-Cas9 library lentivirus screening in radiation-treated NPC cells was combined with second-generation sequence technology to identify functional genes, which were further validated in radioresistant NPC cells and patient tissues. RESULTS: Eleven radiosensitive and radioresistant genes were screened. Among these genes, the expression of FBLN5, FAM3C, MUS81, and DNAJC17 were significantly lower and TOMM20, CDKN2AIP, SNX22, and SP1 were higher in the radioresistant NPC cells (C666-1R, 5-8FR) (p < 0.05). CALD1 was highly expressed in C666-1R. Furthermore, we found knockout of FBLN5, FAM3C, MUS81 and DNAJC17 promoted the proliferation of NPC cells, while CDKN2AIP and SP1 had the opposed results (p < 0.05). This result was verified in NPC patient tissues. Meanwhile, KEGG analysis showed that the Fanconi anemia pathway and the TGF-ß signaling pathway possibly contributed to radiosensitivity or radioresistance in NPC. CONCLUSIONS: Nine genes involved in the radiosensitivity or radioresistance of NPC: four genes for radiosensitivity (FBLN5, FAM3C, MUS81, and DNAJC17), two genes for radioresistance (CDKN2AIP, SP1), two potential radioresistant genes (TOMM20, SNX22), and a potential radiosensitive gene (CALD1). Genome-scale CRISPR-Cas9 knockout screening for radiosensitive and radioresistant genes in NPC may provide new insights into the mechanisms underlying clinical radioresistance to improve the efficacy of radiotherapy for NPC.

17.
Front Oncol ; 13: 1124080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776317

RESUMO

Background: Transforming growth factor (TGF)-ß signaling is strongly related to the development and progression of tumor. We aimed to construct a prognostic gene signature based on TGF-ß signaling-related genes for predicting clinical prognosis and immunotherapy responses of patients with clear cell renal cell carcinoma (ccRCC). Methods: The gene expression profiles and corresponding clinical information of ccRCC were collected from the TCGA and the ArrayExpress (E-MTAB-1980) databases. LASSO, univariate and multivariate Cox regression analyses were conducted to construct a prognostic signature in the TCGA cohort. The E-MTAB-1980 cohort were used for validation. Kaplan-Meier (K-M) survival and time-dependent receiver operating characteristic (ROC) were conducted to assess effectiveness and reliability of the signature. The differences in gene enrichments, immune cell infiltration, and expression of immune checkpoints in ccRCC patients showing different risks were investigated. Results: We constructed a seven gene (PML, CDKN2B, COL1A2, CHRDL1, HPGD, CGN and TGFBR3) signature, which divided the ccRCC patients into high risk group and low risk group. The K-M analysis indicated that patients in the high risk group had a significantly shorter overall survival (OS) time than that in the low risk group in the TCGA (p < 0.001) and E-MTAB-1980 (p = 0.012). The AUC of the signature reached 0.77 at 1 year, 0.7 at 3 years, and 0.71 at 5 years in the TCGA, respectively, and reached 0.69 at 1 year, 0.72 at 3 years, and 0.75 at 5 years in the E-MTAB-1980, respectively. Further analyses confirmed the risk score as an independent prognostic factor for ccRCC (p < 0.001). The results of ssGSEA that immune cell infiltration degree and the scores of immune-related functions were significantly increased in the high risk group. The CIBERSORT analysis indicated that the abundance of immune cell were significantly different between two risk groups. Furthermore, The risk score was positively related to the expression of PD-1, CTLA4 and LAG3.These results indicated that patients in the high risk group benefit more from immunotherapy. Conclusion: We constructed a novel TGF-ß signaling-related genes signature that could serve as an promising independent factor for predicting clinical prognosis and immunotherapy responses in ccRCC patients.

18.
Oral Dis ; 29(1): 138-153, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33901303

RESUMO

OBJECTIVE: The aim of this study was to identify prognostic autophagy-related genes and lncRNAs to predict clinical outcomes in head and neck squamous cell carcinoma (HNSCC). SUBJECTS AND METHODS: Differentially expressed autophagy-related genes and autophagy-related lncRNAs were identified by comparing pare-carcinoma and carcinoma samples of HNSCC. And then, we constructed an ARG and an AR-lncRNA signature risk score. Receiver operating characteristic (ROC) curve analyses were performed to assess the prognostic prediction capacity. Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) functional annotation were used to analysis the functions of ARGs and AR-lncRNAs. RESULTS: Six ARGs and thirteen AR-lncRNAs were identified in the ARG and AR-lncRNA signatures, and overall survival (OS) in the high-risk group was significantly shorter than the low-risk group. ROC analysis showed the ARG and AR-lncRNA signatures have excellent ability of predicting the total OS of patients with HNSCC. What's more, GSEA and GO functional annotation proved that autophagy-related pathways are mainly enriched in the high-risk group. CONCLUSIONS: These findings indicated that our ARG signature and AR-lncRNA signature could be considered to predict the prognosis of patients with HNSCC and provide a deep understanding of the biological mechanisms of autophagy in HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Regulação Neoplásica da Expressão Gênica , Prognóstico , Neoplasias de Cabeça e Pescoço/genética , Autofagia/genética
19.
Front Immunol ; 13: 1019967, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225931

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignant cancers, and patients with HNSCC possess early metastases and poor prognosis. Systematic therapies (including chemotherapy, targeted therapy, and immunotherapy) are generally applied in the advanced/late stages of HNSCC, but primary and acquired resistance eventually occurs. At present, reliable biomarkers to predict the prognosis of HNSCC have not been completely identified. Recent studies have shown that neutrophil extracellular traps (NETs) are implicated in cancer progression, metastasis and cancer immune response, and NET-related gene signatures are associated with the prognosis of patients with several human cancers. To explore whether NET-related genes play crucial roles in HNSCC, we have performed systematic analysis and reported several findings in the current study. Firstly, we identified seven novel NET-related genes and developed a NET-score signature, which was highly associated with the clinicopathological and immune traits of the HNSCC patients. Then, we, for the first time, found that NIFK was significantly upregulated in HNSCC patient samples, and its levels were significantly linked to tumor malignancy and immune status. Moreover, functional experiments confirmed that NIFK was required for HNSCC cell proliferation and metastasis. Altogether, this study has identified a novel NET-score signature based on seven novel NET-related genes to predict the prognosis of HNSCC and NIFK has also explored a new method for personalized chemo-/immuno-therapy of HNSCC.


Assuntos
Armadilhas Extracelulares , Neoplasias de Cabeça e Pescoço , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Fatores Imunológicos , Imunoterapia , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia
20.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36233327

RESUMO

WRKYs are one of the largest transcription factor (TF) families and play an important role in plant resistance to various stresses. TaWRKY133, a group I WRKY protein, responds to a variety of abiotic stresses, including PEG treatment. The TaWRKY133 protein is located in the nucleus of tobacco epidermal cells, and both its N-terminal and C-terminal domains exhibit transcriptional activation activity. Overexpression of TaWRKY133 reduced drought tolerance in Arabidopsis thaliana, as reflected by a lower germination rate, shorter roots, higher stomatal aperture, poorer growth and lower antioxidant enzyme activities under drought treatment. Moreover, expression levels of stress-related genes (DREB2A, RD29A, RD29B, ABF1, ABA2, ABI1, SOD (Cu/Zn), POD1 and CAT1) were downregulated in transgenic Arabidopsis under drought stress. Gene silencing of TaWRKY133 enhanced the drought tolerance of wheat, as reflected in better growth, higher antioxidant enzyme activities, and higher expression levels of stress-related genes including DREB1, DREB3, ABF, ERF3, SOD (Fe), POD, CAT and P5CS. In conclusion, these results suggest that TaWRKY133 might reduce drought tolerance in plants by regulating the expression of stress-related genes.


Assuntos
Arabidopsis , Secas , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico/genética , Superóxido Dismutase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA