RESUMO
Cold-induced injuries severely limit opportunities and outcomes of hypothermic therapies and organ preservation, calling for better understanding of cold adaptation. Here, by surveying cold-altered chromatin accessibility and integrated CUT&Tag/RNA-seq analyses in human stem cells, we reveal forkhead box O1 (FOXO1) as a key transcription factor for autonomous cold adaptation. Accordingly, we find a nonconventional, temperature-sensitive FOXO1 transport mechanism involving the nuclear pore complex protein RANBP2, SUMO-modification of transporter proteins Importin-7 and Exportin-1, and a SUMO-interacting motif on FOXO1. Our conclusions are supported by cold survival experiments with human cell models and zebrafish larvae. Promoting FOXO1 nuclear entry by the Exportin-1 inhibitor KPT-330 enhances cold tolerance in pre-diabetic obese mice, and greatly prolongs the shelf-life of human and mouse pancreatic tissues and islets. Transplantation of mouse islets cold-stored for 14 days reestablishes normoglycemia in diabetic mice. Our findings uncover a regulatory network and potential therapeutic targets to boost spontaneous cold adaptation.
Assuntos
Diabetes Mellitus Experimental , Fatores de Transcrição Forkhead , Camundongos , Humanos , Animais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Transporte Ativo do Núcleo Celular , Peixe-Zebra/metabolismo , Carioferinas/metabolismoRESUMO
Background: Portal vein tumor thrombus (PVTT) seriously affects the prognosis of hepatocellular carcinoma (HCC). However, whether bile duct tumor thrombus (BDTT) significantly affects the prognosis of HCC as much as PVTT remains unclear. We aimed to compare the long-term surgical outcomes of HCC with macroscopic PVTT (macro-PVTT) and macroscopic BDTT (macro-BDTT). Methods: The data of HCC patients with macro-BDTT or macro-PVTT who underwent hemihepatectomy were retrospectively reviewed. A propensity score matching (PSM) analysis was performed to reduce the baseline imbalance. The recurrence-free survival (RFS) and overall survival (OS) rates were compared between the cohorts. Results: Before PSM, the PVTT group had worse RFS and OS rates than the BDTT group (P = 0.043 and P = 0.008, respectively). Multivariate analyses identified PVTT (hazard ratio [HR] = 1.835, P = 0.016) and large HCC (HR = 1.553, P = 0.039) as independent risk factors for poor OS and RFS, respectively. After PSM, the PVTT group had worse RFS and OS rates than the BDTT group (P = 0.037 and P = 0.004, respectively). The 3- and 5-year OS rates were significantly higher in the BDTT group (59.5% and 52.1%, respectively) than in the PVTT group (33.3% and 20.2%, respectively). Conclusion: Aggressive hemihepatectomy provides an acceptable prognosis for HCC patients with macro-BDTT. Furthermore, the long-term surgical outcomes of HCC patients with macro-BDTT were significantly better than those of HCC patients with macro-PVTT.
RESUMO
Background: The long-term prognosis after surgery of patients with hepatocellular carcinoma (HCC) and extrahepatic bile duct tumor thrombus (Ex-BDTT) remains unknown. We aimed to identify the surgical outcomes of patients with HCC and Ex-BDTT. Methods: A total of 138 patients with Ex-BDTT who underwent hepatectomy with preservation of the extrahepatic bile duct from five large hospitals in China between January 2009 and December 2017 were included. The Cox proportional hazards model was used to analyze overall survival (OS) and recurrence-free survival (RFS). Results: With a median follow-up of 60 months (range, 1-127.8 months), the median OS and RFS of the patients were 28.6 and 8.9 months, respectively. The 1-, 3-, and 5-year OS rates of HCC patients with Ex-BDTT were 71.7%, 41.2%, and 33.5%, respectively, and the corresponding RFS rates were 43.5%, 21.7%, and 20.0%, respectively. Multivariate analysis identified that major hepatectomy, R0 resection, and major vascular invasion were independent prognostic factors for OS and RFS. In addition, preoperative serum total bilirubin ≥ 4.2 mg/dL was an independent prognostic factor for RFS. Conclusion: Major hepatectomy with preservation of the extrahepatic bile duct can provide favorable long-term survival for HCC patients with Ex-BDTT.
RESUMO
Purpose: In recent years, immune checkpoint inhibitors have been used in combination with tyrosine kinase inhibitors and local therapies, creating a new era in treating hepatocellular carcinoma (HCC) with portal vein tumor thrombus (PVTT). However, the benefits of this triple therapy remain unclear. Thus, this study evaluated whether the combination of transarterial chemoembolization (TACE), lenvatinib, and programmed death-1 (PD-1) inhibitors (triple therapy) was effective and safe for unresectable HCC with main trunk portal vein tumor thrombus (Vp4). Patients and Methods: This study enrolled patients receiving triple therapy at four institutions between August 2018 and April 2022. Patient characteristics and course of treatment were extracted from patient records. Tumors and tumor thrombus response were evaluated using an HCC-specific modified RECIST. Kaplan-Meier curve analysis demonstrated overall survival (OS) and progression-free survival (PFS). Adverse events (AEs) were evaluated according to the National Cancer Institute Common Terminology Criteria for Adverse Events, version 5.0. Results: Median follow-up duration was 18 (4.0-26.3) months. Overall, 41 patients with HCC and Vp4 receiving first-line triple therapy were enrolled. The intrahepatic tumor objective response rate was 68.3%. The median OS was 21.7 (range, 2.8-30.5) months, whereas the median PFS was 14.5 (range, 1.3-27.6) months. Twelve patients received sequential resections. Resection was independently associated with favorable OS and PFS. Fever (31.7%), hypertension (26.8%), fatigue (24.4%), abnormal liver function (63.4%) and decreased appetite (21.9%) were the AEs frequently associated with treatment. No treatment-related mortality occurred. Conclusion: TACE plus lenvatinib and PD-1 inhibition was effective and tolerable for treating unresectable HCC with Vp4, with a high tumor response rate and favorable prognosis.
RESUMO
A high-performance medical image segmentation model based on deep learning depends on the availability of large amounts of annotated training data. However, it is not trivial to obtain sufficient annotated medical images. Generally, the small size of most tissue lesions, e.g., pulmonary nodules and liver tumours, could worsen the class imbalance problem in medical image segmentation. In this study, we propose a multidimensional data augmentation method combining affine transform and random oversampling. The training data is first expanded by affine transformation combined with random oversampling to improve the prior data distribution of small objects and the diversity of samples. Secondly, class weight balancing is used to avoid having biased networks since the number of background pixels is much higher than the lesion pixels. The class imbalance problem is solved by utilizing weighted cross-entropy loss function during the training of the CNN model. The LUNA16 and LiTS17 datasets were introduced to evaluate the performance of our works, where four deep neural network models, Mask-RCNN, U-Net, SegNet and DeepLabv3+, were adopted for small tissue lesion segmentation in CT images. In addition, the small tissue segmentation performance of the four different deep learning architectures on both datasets could be greatly improved by incorporating the data augmentation strategy. The best pixelwise segmentation performance for both pulmonary nodules and liver tumours was obtained by the Mask-RCNN model, with DSC values of 0.829 and 0.879, respectively, which were similar to those of state-of-the-art methods.
Assuntos
Neoplasias Hepáticas , Nódulos Pulmonares Múltiplos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de ComputaçãoRESUMO
BACKGROUND: It is unclear whether associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) can be performed in hepatitis B virus-related hepatocellular carcinoma (HCC) patients with cirrhosis. We explored the efficacy of ALPPS in HCC patients. METHODS: Data of 54 patients who underwent ALPPS between August 2014 and July 2020 at three centers were collected. Adverse factors affecting their prognosis were analyzed and subsequently compared with 184 patients who underwent transcatheter arterial chemoembolization (TACE). RESULTS: Overall survival rates of the ALPPS group at 1, 3, and 5 years were 70.6%, 38.4%, and 31.7%, respectively; corresponding disease-free survival rates were 50.5%, 22.4%, and 19.2%, respectively. The ALPPS group had a significantly greater long-term survival rate than the TACE group (before propensity score matching, P < 0.001; after propensity score matching, P = 0.002). Multivariate analysis demonstrated that multifocal lesions (P = 0.018) and macroscopic vascular invasion (P = 0.001) were prognostic factors for HCC patients who underwent ALPPS. After the propensity score matching, the multifocal lesions (P = 0.031), macroscopic vascular invasion (P = 0.003), and treatment type (ALPPS/TACE) (P = 0.026) were the factors adversely affecting the prognosis of HCC patients. CONCLUSION: ALPPS was feasible in hepatitis B virus-related HCC patients with cirrhosis and resulted in better survival than TACE.
Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Veia Porta/cirurgia , Veia Porta/patologia , Vírus da Hepatite B , Quimioembolização Terapêutica/efeitos adversos , Resultado do Tratamento , Hepatectomia/efeitos adversos , Hepatectomia/métodos , Ligadura , Cirrose Hepática/patologiaRESUMO
Intestinal probiotics are often used for the in situ treatment of diseases, such as metabolic disorders, tumors, and chronic inflammatory infections. Recently, there has been an increased emphasis on intelligent, customized treatments with a focus on long-term efficacy; however, traditional probiotic therapy has not kept up with this trend. The use of synthetic biology to construct gut-engineered probiotics as live therapeutics is a promising avenue in the treatment of specific diseases, such as phenylketonuria and inflammatory bowel disease. These studies generally involve a series of fundamental design issues: choosing an engineered chassis, improving the colonization ability of engineered probiotics, designing functional gene circuits, and ensuring the safety of engineered probiotics. In this review, we summarize the relevant past research, the progress of current research, and discuss the key issues that restrict the widespread application of intestinal engineered probiotic living therapeutics.
Assuntos
Doenças Inflamatórias Intestinais , Doenças Metabólicas , Probióticos , Humanos , Redes Reguladoras de Genes , Probióticos/uso terapêutico , Biologia SintéticaRESUMO
Lineage reprogramming of resident glial cells to dopaminergic neurons (DAns) is an attractive prospect of the cell-replacement therapy for Parkinson's disease (PD). However, it is unclear whether repressing polypyrimidine tract binding protein 1 (PTBP1) could efficiently convert astrocyte to DAns in the substantia nigra and striatum. Although reporter-positive DAns were observed in both groups after delivering the adeno-associated virus (AAV) expressing a reporter with shRNA or CRISPR-CasRx to repress astroglial PTBP1, the possibility of AAV leaking into endogenous DAns could not be excluded without using a reliable lineage-tracing method. By adopting stringent lineage-tracing strategy, two other studies show that either knockdown or genetic deletion of quiescent astroglial PTBP1 fails to obtain induced DAns under physiological condition. However, the role of reactive astrocytes might be underestimated because upon brain injury, reactive astrocyte can acquire certain stem cell hallmarks that may facilitate the lineage conversion process. Therefore, whether reactive astrocytes could be genuinely converted to DAns after PTBP1 repression in a PD model needs further validation. In this study, we used Aldh1l1-CreERT2-mediated specific astrocyte-lineage-tracing method to investigate whether reactive astrocytes could be converted to DAns in a 6-hydroxydopamine (6-OHDA) mouse model of PD. However, we found that no astrocyte-originated DAn was generated after effective and persistent knockdown of astroglial PTBP1 either in the substantia nigra or in striatum, while AAV 'leakage' to nearby neurons was easily observed. Our results confirm that repressing PTBP1 does not convert astrocytes to DAns, regardless of physiological or PD-related pathological conditions.
Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Animais , Astrócitos/metabolismo , Dependovirus/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Camundongos , Oxidopamina/metabolismo , Oxidopamina/farmacologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Substância NegraRESUMO
Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder symptomatically characterized by resting tremor, rigidity, bradykinesia, and gait impairment. These motor deficits suffered by PD patients primarily result from selective dysfunction or loss of dopaminergic neurons of the substantia nigra pars compacta (SNpc). Most of the existing therapies for PD are based on the replacement of dopamine, which is symptomatically effective in the early stage but becomes increasingly less effective and is accompanied by serious side effects in the advanced stages of the disease. Currently, there are no strategies to slow neuronal degeneration or prevent the progression of PD. Thus, the prospect of regenerating functional dopaminergic neurons is very attractive. Over the last few decades, significant progress has been made in the development of dopaminergic regenerative strategies for curing PD. The most promising approach seems to be cell-replacement therapy (CRT) using human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs), which are unlimitedly available and have gained much success in preclinical trials. Despite the challenges, stem cell-based CRT will make significant steps toward the clinic in the coming decade. Alternatively, direct lineage reprogramming, especially in situ direct conversion of glia cells to induced neurons, which exhibits some advantages including no ethical concerns, no risk of tumor formation, and even no need for transplantation, has gained much attention recently. Evoking the endogenous regeneration ability of neural stem cells (NSCs) is an idyllic method of dopaminergic neuroregeneration which remains highly controversial. Here, we review many of these advances, highlighting areas and strategies that might be particularly suited to the development of regenerative approaches that restore dopaminergic function in PD.