Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Foods ; 13(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39200428

RESUMO

Pseudomonas fragi (P. fragi) is usually detected in low-temperature meat products, and seriously threatens food safety and human health. Therefore, the study investigated the antibacterial mechanism of linalool against P. fragi from membrane damage and metabolic disruption. Results from field-emission transmission electron microscopy (FETEM) and atomic force microscopy (AFM) showed that linalool damage membrane integrity increases surface shrinkage and roughness. According to Fourier transform infrared (FTIR) spectra results, the components in the membrane underwent significant changes, including nucleic acid leakage, carbohydrate production, protein denaturation and modification, and fatty acid content reduction. The data obtained from amino acid metabolomics indicated that linalool caused excessive synthesis and metabolism of specific amino acids, particularly tryptophan metabolism and arginine biosynthesis. The reduced activities of glucose 6-phosphate dehydrogenase (G6PDH), malate dehydrogenase (MDH), and phosphofructokinase (PFK) suggested that linalool impair the respiratory chain and energy metabolism. Meanwhile, genes encoding the above enzymes were differentially expressed, with pfkB overexpression and zwf and mqo downregulation. Furthermore, molecular docking revealed that linalool can interact with the amino acid residues of G6DPH, MDH and PFK through hydrogen bonds. Therefore, it is hypothesized that the mechanism of linalool against P. fragi may involve cell membrane damage (structure and morphology), disturbance of energy metabolism (TCA cycle, EMP and HMP pathway) and amino acid metabolism (cysteine, glutamic acid and citrulline). These findings contribute to the development of linalool as a promising antibacterial agent in response to the food security challenge.

2.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762525

RESUMO

It has been reported that in an oxidative environment, the flavonoid 2R,3R-dihydroquercetin (2R,3R-DHQ) oxidizes into a product that rearranges to form quercetin. As quercetin is a very potent antioxidant, much better than 2R,3R-DHQ, this would be an intriguing form of targeting the antioxidant quercetin. The aim of the present study is to further elaborate on this targeting. We can confirm the previous observation that 2R,3R-DHQ is oxidized by horseradish peroxidase (HRP), with H2O2 as the oxidant. However, HPLC analysis revealed that no quercetin was formed, but instead an unstable oxidation product. The inclusion of glutathione (GSH) during the oxidation process resulted in the formation of a 2R,3R-DHQ-GSH adduct, as was identified using HPLC with IT-TOF/MS detection. GSH adducts appeared on the B-ring of the 2R,3R-DHQ quinone, indicating that during oxidation, the B-ring is oxidized from a catechol to form a quinone group. Ascorbate could reduce the quinone back to 2R,3R-DHQ. No 2S,3R-DHQ was detected after the reduction by ascorbate, indicating that a possible epimerization of 2R,3R-DHQ quinone to 2S,3R-DHQ quinone does not occur. The fact that no epimerization of the oxidized product of 2R,3R-DHQ is observed, and that GSH adducts the oxidized product of 2R,3R-DHQ on the B-ring, led us to conclude that the redox-modulating activity of 2R,3R-DHQ quinone resides in its B-ring. This could be confirmed by chemical calculation. Apparently, the administration of 2R,3R-DHQ in an oxidative environment does not result in 'biotargeting' quercetin.


Assuntos
Antioxidantes , Quercetina , Antioxidantes/farmacologia , Quercetina/farmacologia , Peróxido de Hidrogênio , Ácido Ascórbico , Glutationa , Quinonas
3.
J Am Chem Soc ; 145(42): 22945-22953, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37769281

RESUMO

Darobactin is a heptapeptide antibiotic featuring an ether cross-link and a C-C cross-link, and both cross-links are installed by a radical S-adenosylmethionine (rSAM) enzyme DarE. How a single DarE enzyme affords the two chemically distinct cross-links remains largely obscure. Herein, by mapping the biosynthetic landscape for darobactin-like RiPP (daropeptide), we identified and characterized two novel daropeptides that lack the C-C cross-link present in darobactin and instead are solely composed of ether cross-links. Phylogenetic and mutagenesis analyses reveal that the daropeptide maturases possess intrinsic multifunctionality, catalyzing not only the formation of ether cross-link but also C-C cross-linking and Ser oxidation. Intriguingly, the different chemical outcomes are controlled by the exact substrate motifs. Our work not only provides a roadmap for the discovery of new daropeptide natural products but also offers insights into the regulatory mechanisms that govern these remarkably versatile ether cross-link-forming rSAM enzymes.


Assuntos
Éter , S-Adenosilmetionina , S-Adenosilmetionina/química , Filogenia , Éteres , Etil-Éteres , Catálise
4.
Int J Biol Macromol ; 244: 125167, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37270123

RESUMO

This study aimed to prepare sodium alginate-linalool emulsion (SA-LE) to overcome the low solubility of linalool and explore its inhibitory activity against Shigella sonnei. The results indicated that linalool significantly reduced the interfacial tension between SA and oil phase (p < 0.05). Droplet sizes of fresh emulsions were uniform with sizes from 2.54 to 2.58 µm. The ζ-potential was between -23.94 and -25.03 mV, and the viscosity distribution was 973.62 to 981.03 mPa·s at pH 5-8 (near neutral pH) without significant difference. In addition, linalool could be effectively released from SA-LE in accordance with the Peppas-Sahlin model, mainly described by Fickian diffusion. In particular, SA-LE can inhibit S. sonnei with a minimum inhibitory concentration of 3 mL/L, which was lower than free linalool. The mechanism can be described as damaging the membrane structure and inhibiting respiratory metabolism accompanied by oxidative stress based on FESEM, SDH activity, ATP and ROS content. These results suggest that SA is an effective encapsulation strategy to enhance the stability of linalool and its inhibitory effect on S. sonnei at near neutral pH. Moreover, the prepared SA-LE has the potential to be developed as a natural antibacterial agent to address the growing food safety challenges.


Assuntos
Alginatos , Shigella sonnei , Emulsões/química , Alginatos/química , Antibacterianos/farmacologia
5.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36746436

RESUMO

AIMS: This study aimed to investigate the mechanism of linalool against Pseudomonas lundensis and its application on beef. METHODS AND RESULTS: Field emission scanning electron microscopy found that linalool exerted antibacterial activity with a minimum inhibitory concentration (MIC) of 1.5 ml l-1 by disrupting cell structure. Loss of cell membrane integrity was monitored due to leakage of nucleic acids and K+. In addition, respiratory depression appeared in Ps. lundensis based on inhibition of enzyme activities including hexokinase (HK), glucose 6-phosphate dehydrogenase (G6PDH), phosphofructokinase (PFK), pyruvate kinase (PK), pyruvate dehydrogenase (PDH), citrate synthase (CS), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH). Subsequently, energy limitation also occurred according to the decrease in ATP content and ATPase activity. Molecular docking confirmed that linalool can combine with enzymes in cell wall (ddlB) and energy synthesis (AtpD) pathways to exert antibacterial effect. Of note, linalool has advantages for beef preservation by delaying quality changes including pH, total volatile basic nitrogen (TVB-N) and total viable count (TVC). CONCLUSIONS: Linalool has significant inhibitory effect on Ps. lundensis, and respiratory depression driven by membrane damage is the main inhibitory mechanism.


Assuntos
Antibacterianos , Insuficiência Respiratória , Animais , Bovinos , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia
6.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232887

RESUMO

Linalool showed a broad-spectrum antibacterial effect, but few studies have elucidated the antibacterial mechanism of linalool on Pseudomonas fragi (P. fragi) to date. The present study aimed to uncover the antimicrobial activity and potential mechanism of linalool against P. fragi by determining key enzyme activities and metabolites combined with a high-throughput method and metabolomic pathway analysis. As a result, linalool had excellent inhibitory activity against P. fragi with MIC of 1.5 mL/L. In addition, the presence of linalool significantly altered the intracellular metabolic profile and a total of 346 differential metabolites were identified, of which 201 were up-regulated and 145 were down-regulated. The highlight pathways included beta-alanine metabolism, pantothenic acid and CoA metabolism, alanine, aspartate and glutamate metabolism, nicotinate and nicotinamide metabolism. Overall, linalool could cause metabolic disorders in cells, and the main metabolic pathways involved energy metabolism, amino acid metabolism and nucleic acid metabolism. In particular, the results of intracellular ATP content and related enzymatic activities (ATPase, SDH, and GOT) also highlighted that energy limitation and amino acid disturbance occurred intracellularly. Together, these findings provided new insights into the mechanism by which linalool inhibited P. fragi and theoretical guidance for its development as a natural preservative.


Assuntos
Anti-Infecciosos , Niacina , Ácidos Nucleicos , Pseudomonas fragi , Insuficiência Respiratória , Monoterpenos Acíclicos , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Anti-Infecciosos/metabolismo , Ácido Aspártico/metabolismo , Coenzima A/metabolismo , Glutamatos/metabolismo , Humanos , Metabolômica , Niacina/metabolismo , Niacinamida/metabolismo , Ácidos Nucleicos/metabolismo , Ácido Pantotênico , Pseudomonas fragi/metabolismo
7.
Front Immunol ; 13: 882216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795676

RESUMO

Background: Necroptosis, a form of programmed cell death, is increasingly being investigated for its controversial role in tumorigenesis and progression. Necroptosis suppresses tumor formation and tumor development by killing tumor cells; however, the necrotic cells also promote tumor formation and tumor development via the immunosuppressive effect of necroptosis and inflammatory response caused by cytokine release. Thus, the exact mechanism of necroptosis in pan-cancer remains unknown. Methods: The data of 11,057 cancer samples were downloaded from the TCGA database, along with clinical information, tumor mutation burden, and microsatellite instability information of the corresponding patients. We used the TCGA data in a pan-cancer analysis to identify differences in mRNA level as well as single nucleotide variants, copy number variants, methylation profiles, and genomic signatures of miRNA-mRNA interactions. Two drug datasets (from GDSC, CTRP) were used to evaluate drug sensitivity and resistance against necroptosis genes. Results: Necroptosis genes were aberrantly expressed in various cancers. The frequency of necroptosis gene mutations was highest in lung squamous cell carcinoma. Furthermore, the correlation between necroptosis gene expression in the tumor microenvironment and immune cell infiltration varied for different cancers. High necroptosis gene expression was found to correlate with NK, Tfh, Th1, CD8_T, and DC cells. These can therefore be used as biomarkers to predict prognosis. By matching gene targets with drugs, we identified potential candidate drugs. Conclusion: Our study showed the genomic alterations and clinical features of necroptosis genes in 33 cancers. This may help clarify the link between necroptosis and tumorigenesis. Our findings may also provide new approaches for the clinical treatment of cancer.


Assuntos
Necroptose , Neoplasias , Carcinogênese , Humanos , Necroptose/genética , Necrose/genética , Neoplasias/genética , RNA Mensageiro , Microambiente Tumoral/genética
8.
Food Res Int ; 157: 111407, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761661

RESUMO

This work aimed to explore the antibacterial ability and potential mechanism of linalool against Brochothrix thermosphacta (B. thermosphacta), providing knowledge of the preservation of chilled beef with linalool. The results found that linalool had an encouraging inhibitory effect on B. thermosphacta with a minimum inhibitory concentration (MIC) of 1.5 mL/L. Results of FESEM and zeta potential combined with probe labeling confirmed that linalool destroyed the cell structure thereby causing the leakage of intracellular components (AKP, protein, nucleic acid and ion). In addition, linalool caused respiratory disturbance by measuring the key enzyme activities including PK, SDH, MDH and ATPase. Energy limitation also appeared under linalool stress as seen from changes in ATP content (decreased by 56.06% and 69.24% in MIC and 2MIC groups, respectively). The respiratory inhibition rate of linalool to B. thermosphacta was 23.58% and the superposing rate with malonic acid was minimal (35.52%), suggesting that respiratory depression was mainly caused by the TCA cycle. Furthermore, accumulation of ROS and increase in MDA content (increased by 71.17% and 78.03% in MIC and 2MIC groups, respectively) accompanied by decreased activities of detoxification enzymes CAT and POD suggested that oxidative stress contributed to the bactericidal mechanism. Finally, linalool has been shown to effectively inhibit quality deterioration of chilled beef during storage by measuring pH, TVB-N and TVC without affecting sensory acceptability. All these highlight the great promise of using linalool as natural preservative for food industry.


Assuntos
Antibacterianos , Brochothrix , Monoterpenos Acíclicos , Animais , Antibacterianos/farmacologia , Bovinos
9.
J Org Chem ; 87(10): 6927-6933, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35512323

RESUMO

Liriogerphines A-D (1-4, respectively), an unprecedented class of hybrids of germacranolide-type sesquiterpenoids and aporphine-type alkaloids, were isolated from the rare medicinal plant Liriodendron chinense. Their structures were elucidated by comprehensive spectroscopic analyses combined with electronic circular dichroism calculations and X-ray crystallographic data. Biosynthetically, an aza-Michael addition reaction is proposed to be involved in the assemblies of this class of hybrids. Compound 4 exhibited cytotoxicity against leukemia cells via inducing apoptosis and inhibiting Bcl-2 expression.


Assuntos
Alcaloides , Antineoplásicos , Liriodendron , Sesquiterpenos , Alcaloides/química , Alcaloides/farmacologia , China , Estrutura Molecular , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Árvores
10.
World J Microbiol Biotechnol ; 38(4): 56, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35165818

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is the dominant spoilage bacterium in cold fresh beef. The current strategy is undertaken to overcome the low water solubility of linalool by encapsulating linalool into emulsions. The results of field emission scanning electron microscopy and particle size distribution revealed that the appearance of the bacterial cells was severely disrupted after exposure to linalool emulsion (LE) with an minimum inhibitory concentration (MIC) of 1.5 mL/L. Probes combined with fluorescence spectroscopy were performed to detect cell membrane permeability, while intracellular components (protein and ion leakage) and crystal violet staining were further measured to characterize cell membrane integrity and biofilm formation ability. The results confirmed that LE could destroy the structure of the cell membrane, thereby leading to the leakage of intracellular material and effective removal of biofilms. Molecular docking confirmed that LE can interact with the flagellar cap protein (FliD) and DNA of P. aeruginosa, inhibiting biofilm formation and causing genetic damage. Furthermore, the results of respiratory metabolism and reactive oxygen species (ROS) accumulation revealed that LE could significantly inhibit the metabolic activity of P. aeruginosa and induce oxidative stress. In particular, the inhibition rate of LE on P. aeruginosa was 23.03% and inhibited mainly the tricarboxylic acid cycle (TCA). Finally, LE was applied to preserve cold fresh beef, and the results showed that LE could effectively inhibit the activity of P. aeruginosa and delay the quality change of cold fresh beef during the storage period. These results are of great significance to developing natural preservatives and extending the shelf life of cold fresh beef.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Monoterpenos Acíclicos , Animais , Antibacterianos/farmacologia , Biofilmes , Bovinos , Emulsões , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular
11.
Foods ; 11(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35010218

RESUMO

Pseudomonas lundensis is the main bacterium responsible for meat spoilage and its control is of great significance. 3-Carene, a natural monoterpene, has been proved to possess antimicrobial activities. This study aimed to investigate the antibacterial activity and mechanism of 3-carene against the meat spoilage bacterium P. lundensis, and explore its application on pork. After 3-carene treatment, cellular structural changes were observed. Cell walls and membranes were destroyed, resulting in the leakage of alkaline phosphatase and cellular contents. The decreased activity of Ca2+-Mg2+-ATPase and Na+-K+-ATPase showed the imbalance of intracellular ions. Subsequently, adenosine triphosphate (ATP) content and oxidative respiratory metabolism characteristics indicated that 3-carene inhibited the metabolism of the tricarboxylic acid cycle in P. lundensis. The results of binding 3-carene with the vital proteins (MurA, OmpW, and AtpD) related to the formation of the cell wall, the composition of the cell membrane, and the synthesis of ATP further suggested that 3-carene possibly affected the normal function of those proteins. In addition, the growth of P. lundensis and increase in pH were inhibited in pork during the 5 days of cold storage after the samples were pre-treated with 3-carene. These results show the anti-P. lundensis activity and mechanism of 3-carene, and its potential use in meat preservation under refrigerated conditions.

12.
Molecules ; 24(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795169

RESUMO

The aim of this study was to develop a nondairy fermented product based on mango slurry. Lactobacillus plantarum and Saccharomyces cerevisiae DV10 were used as starter cultures in single and co-cultivations. The microbial populations and metabolites produced during mango slurry fermentation were investigated. At the end of all fermentations, the bacterial populations were higher than 6.0 log CFU/mL. Lactic acid was the main organic acid produced, achieving up to 6.12 g/L after 24 h in co-culture with L. plantarum and S. cerevisiae DV10. Volatile compounds were determined after 24 h of fermentation, the co-cultures of L. plantarum and S. cerevisiae DV10 could decrease terpenes and produce alcohols and esters. The co-cultivations obtained the most total phenolics as well as showed the strongest 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) radical scavenging activity, ferric-reducing antioxidant power (FRAP) and low-density lipoprotein (LDL) oxidation inhibition. Hence, a high-bioactivity probiotic product was successfully obtained via mango slurry fermentation inoculated with a co-culture of L. plantarum and S. cerevisiae DV10.


Assuntos
Fermentação , Lactobacillus plantarum/metabolismo , Mangifera/química , Saccharomyces cerevisiae/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Microbiologia de Alimentos , Oxirredução , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia
13.
Int J Biol Macromol ; 139: 290-297, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31377291

RESUMO

A ferulic acid-sugar beet pulp pectin complex (FA-SBPP) was prepared using an immobilized enzyme (Novozym 435®) as the catalyst at 60 °C in a vacuum-controlled system. The structure of FA-SBPP was characterized by FT-IR and NMR (1H and 13C). In addition, the antioxidant activity of FA-SBPP was evaluated according to the DPPH free radical scavenging ability and ORAC values. Moreover, the physical and oxidation stability of the emulsion was evaluated by particle size distribution, cream index (CI), peroxide value (POV), and 2-thiobarbituric acid reactive substance (TBARS) formation. The results showed that esterification between FA and SBPP was confirmed, and the reaction mainly occurred at the C-2, C-3, and C-6 positions. When the concentration was 1.0 mg/mL, the DPPH scavenging activity and total antioxidant activity of FA-SBPP-3 were 80.03% and 355.72 µmol TE/g, respectively. Compared with SBPP, FA-SBPP-stabilized emulsions exhibited significant smaller droplet sizes and lower CIs, POVs and TBARS amounts. Thus, the introduction of FA changed not only the chemical reactivity but also the polarity of SBPP, thereby improving its antioxidant ability and affinity for the oil-water interface. Thus, we provide a multifunctional stabilizer that can reduce the dose of antioxidants or even replace them in oil-in-water emulsions.


Assuntos
Antioxidantes/química , Ácidos Cumáricos/química , Emulsões/química , Óleos de Peixe/química , Pectinas/química , Açúcares/química , Água/química , Antioxidantes/farmacologia , Fenômenos Químicos , Ésteres , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Oncol Lett ; 17(2): 1581-1588, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30675216

RESUMO

The aim of the present study was to discuss the design of a microfluidic chip consisting of columns, and its use for the enrichment of nasopharyngeal cancer (NPC) cells. A microfluidic chip experiment was simulated using FLUENT software. Within the microfluidic chip, aptamers were bound to the reaction chamber (consisting of columns) using a biotin-avidin system. Cell suspension was introduced into the reaction chamber to capture NPC cells. NPC cells were subsequently eluted, and the capture rate of the cells was calculated. The modified aptamer-bound microfluidic chip was able to capture NPC cells with a capture rate of ~90%. The modified aptamer-bound microfluidic chip has a wide range of potential applications for the diagnosis of NPC.

15.
J Food Sci ; 83(12): 3059-3068, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30399205

RESUMO

Mango slurries were fermented with 6 different probiotic microorganisms (Lactobacillus plantarum, Streptococcus thermophilus, Lactobacillus casei, Saccharomyces cerevisiae D254, S. cerevisiae DV10, and S. cerevisiae R2) to develop products with higher bioactivity. Changes in pH, reducing sugars, organic acids, and volatile compounds were determined. In addition, total phenolics and antioxidant capacity during fermentation were monitored. Among the strains used, S. cerevisiae D254 exhibited the fastest utilization of sugar in a mango slurry. Different volatile compounds were produced, mainly consisting of fatty acids, alcohols, and esters. S. cerevisiae DV10 produced higher amounts of esters and alcohols. The antioxidant capacity of the mango slurries improved by different degrees after fermentation with the six probiotic microorganisms. Fermentation with L. plantarum obtained the most organic acids as well as total phenolics and exhibited the highest FRAP and CUPRAC values. The results of this study indicated that fermentation with probiotic microorganisms can enhance the health benefits obtained from mango slurries. PRACTICAL APPLICATION: Probiotic-fermented mango slurry is a fermentation product that combines the nutritional value of mango with the health benefits of probiotics. Probiotic fermentation improves the flavor of a mango slurry and increases the availability and variety of mango products that can be appreciated by consumers.


Assuntos
Antioxidantes/análise , Fermentação , Mangifera/química , Mangifera/microbiologia , Probióticos , Compostos Orgânicos Voláteis/análise , Ácidos Carboxílicos/análise , Cobre/toxicidade , Manipulação de Alimentos , Concentração de Íons de Hidrogênio , Lacticaseibacillus casei , Lactobacillus plantarum , Metabolismo dos Lipídeos/efeitos dos fármacos , Fenóis/análise , Saccharomyces cerevisiae , Streptococcus thermophilus , Paladar
16.
J Food Sci Technol ; 55(3): 964-976, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29487438

RESUMO

Matured coconut water (MCW) is a by-product in the coconut milk industry that is usually discarded due to its unpleasant flavor. In this study, low-alcohol coconut water (LACW) was fermented with Saccharomyces cerevisiae to improve the quality of MCW. Volatile components and nonvolatile flavor-related elements were estimated to compare the qualities of the MCW and LACW. Besides measuring the kinetic changes, the levels of fructose, glucose, sucrose and ethanol contents were also determined. The results of the organic acid assays showed that tartaric, pyruvic and succinic acids were the primary organic acids present in LACW and increased significantly with fermentation. The resulting volatile composition assay indicated that esters, alcohols and fatty acids were significantly influenced by fermentation and yeast strains. Moreover, 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), cupric ion reducing antioxidant capacity and ferric reducing antioxidant power values increased significantly throughout the process, correlating with the enhancement of total phenolic content.

17.
J Food Sci Technol ; 54(7): 2067-2076, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28720964

RESUMO

This study aimed to evaluate the effects of black pepper petroleum extract (BPPE) on pathogenic bacteria. The extraction from black pepper showed intense antimicrobial activity against the Gram-positive Listeria monocytogenes ATCC 19115 and the Gram-negative bacteria Salmonella typhimurium ATCC 14028. The minimum inhibitory concentrations of BPPE against L. monocytogenes and S. typhimurium were 0.625 and 1.25 mg/ml, respectively. Detection of Alkaline phosphatase outside the cell revealed that BPPE treatment destroyed the cell wall integrity. BPPE also altered the membrane integrity, thereby causing leaching of 260 and 280 nm UV-absorbing materials into the medium, particularly, nucleic acids and proteins. Propidium iodide infiltration experiments also indicated that BPPE treatment altered the permeability of bacterial cell membrane. Moreover, Na+/K+-ATPase activity was inhibited by BPPE. And the results of scanning electron microscopy showed that BPPE treatment damaged the morphology of the tested bacteria. These results indicated that BPPE could destroy cell wall integrity, alter the permeability of cell membrane, and inhibit the activity of intracellular enzyme, which could kill bacteria.

18.
Food Chem ; 230: 423-431, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28407931

RESUMO

A facile, rapid sample pretreatment method was developed based on magnetic nanoparticles for multi-pesticides residue analysis of grains. Magnetite (Fe3O4) nanoparticles modified with 3-(N,N-diethylamino)propyltrimethoxysilane (Fe3O4-PSA) and commercial C18 were selected as the cleanup adsorbents to remove the target interferences of the matrix, such as fatty acids and non-polar compounds. Rice was used as the representative grain sample for method optimization. The amount of Fe3O4-PSA and C18 were systematically investigated for selecting the suitable purification conditions, and the simultaneous determination of 50 pesticides and 8 related metabolites in rice was established by liquid chromatography-tandem mass spectrometry. Under the optimal conditions, the method validation was performed including linearity, sensitivity, matrix effect, recovery and precision, which all satisfy the requirement for pesticides residue analysis. Compared to the conventional QuEChERS method with non-magnetic material as cleanup adsorbent, the present method can save 30% of the pretreatment time, giving the high throughput analysis possible.


Assuntos
Nanopartículas de Magnetita/química , Resíduos de Praguicidas/química , Praguicidas/química , Resíduos de Praguicidas/análise , Praguicidas/análise , Espectrometria de Massas em Tandem/métodos
19.
Asia Pac J Clin Oncol ; 13(5): e232-e238, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27670847

RESUMO

AIM: High-resolution magic-angle spinning proton nuclear magnetic resonance (HRMAS 1 H NMR) spectroscopy technique was employed to analyze the metabonomic characterizations of lung cancer tissues in hope to identify potential diagnostic biomarkers for malignancy detection and staging research of lung tissues. METHODS: HRMAS 1 H NMR spectroscopy technique can rapidly provide important information for accurate diagnosis and staging of cancer tissues owing to its noninvasive nature and limited requirement for the samples, and thus has been acknowledged as an excellent tool to investigate tissue metabolism and provide a more realistic insight into the metabonomics of tissues when combined with multivariate data analysis (MVDA) such as component analysis and orthogonal partial least squares-discriminant analysis in particular. RESULTS: HRMAS 1 H NMR spectra displayed the metabonomic differences of 32 lung cancer tissues at the different stages from 32 patients. The significant changes (P < 0.05) of some important metabolites such as lipids, aspartate and choline-containing compounds in cancer tissues at the different stages had been identified. Furthermore, the combination of HRMAS 1 H NMR spectroscopy and MVDA might potentially and precisely provided for a high sensitivity, specificity, prediction accuracy in the positive identification of the staging for the cancer tissues in contrast with the pathological data in clinic. CONCLUSION: This study highlighted the potential of metabonomics in clinical settings so that the techniques might be further exploited for the diagnosis and staging prediction of lung cancer in future.


Assuntos
Neoplasias Pulmonares/diagnóstico , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Adulto , Idoso , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Estadiamento de Neoplasias , Prótons
20.
Curr Pharm Des ; 22(46): 6982-6987, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27875973

RESUMO

Earlier we reported the identification of diarylpyrimidine-quinolone hybrids as a new class of HIV-1 NNRTIs. A few of these hybrids displayed moderate inhibitory activity against wt HIV-1 replication at submicromolar level, however, all of them lacked inhibitory activity against the double mutant virus (K103N/Y181C), which is the most prevalent NNRTI resistant-associated double mutant observed in the clinic. In the present study, we designed and synthesized a new series of diarylpyrimidine-quinolone hybrids featuring a halogen group at C-6' position of quinolone ring. The biological results indicated that most of these hybrids could inhibit wt HIV-1 replication at nanomolar level ranging from 0.088 to 0.0096 µM. The most promising hybrid 5c displayed a significant EC50 value of 0.0096 µM against HIV-1 IIIB and of 0.98 µM against K103N/Y181C. Further docking studies revealed that these hybrids could be well located in the hydrophobic NNIBP of HIV-1 RT despite the bulky and polar properties of a quinolone 3-carboxylic acid scaffold in the molecules. These promising results suggested a high potential to further develop these hybrids as next-generation NNRTIs with improved antiviral efficacy and resistance profile.


Assuntos
Fármacos Anti-HIV/farmacologia , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV/efeitos dos fármacos , Pirimidinas/farmacologia , Quinolonas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Fármacos Anti-HIV/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Farmacorresistência Viral/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Pirimidinas/química , Quinolonas/química , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA