Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Cancer ; 22(1): 151, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684641

RESUMO

BACKGROUND: Bladder cancer (BCa) is the fourth most common malignant tumor with a poor prognosis worldwide. Further exploration and research are needed to unmask the underlying roles and molecular mechanisms of circular RNAs. In the current study, our findings showed that circXRN2 suppresses tumor progression driven by histone lactylation by activating the Hippo pathway in human bladder cancer. METHODS: RNA immunoprecipitation (RIP) followed by circRNA sequencing confirmed circXRN2 as the research object. Overexpression of circXRN2 and knockdown of TAZ/YAP further verified the biological functions in T24 and TCCSUP cells. RIP, immunoprecipitation and coimmunoprecipitation were used to elucidate the interaction between circXRN2 and LATS1. A Seahorse metabolic analyzer was used to determine the glycolytic rate. Cleavage under targets and Tagmentation (CUT&Tag) and chromatin immunoprecipitation (ChIP) were employed to ensure the regulatory roles of H3K18 lactylation in the transcriptional activity of LCN2. RESULTS: CircXRN2 is aberrantly downregulated in bladder cancer tissues and cell lines. CircXRN2 inhibits the proliferation and migration of tumor cells both in vitro and in vivo. In addition, circXRN2 serves as a negative regulator of glycolysis and lactate production. Mechanistically, circXRN2 prevents LATS1 from SPOP-mediated degradation by binding to the SPOP degron and then activates the Hippo signaling pathway to exert various biological functions. The circXRN2-Hippo pathway regulatory axis further modulates tumor progression by inhibiting H3K18 lactylation and LCN2 expression in human bladder cancer. CONCLUSIONS: CircXRN2 suppresses tumor progression driven by H3K18 lactylation by activating the Hippo signaling pathway in human bladder cancer. Our results indicated novel therapeutic targets and provided promising strategies for clinical intervention in human bladder cancer.


Assuntos
Histonas , Neoplasias da Bexiga Urinária , Humanos , Via de Sinalização Hippo , Neoplasias da Bexiga Urinária/genética , Imunoprecipitação da Cromatina , Ácido Láctico , Proteínas Nucleares , Proteínas Repressoras
2.
Front Cell Dev Biol ; 10: 961983, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187468

RESUMO

Circular RNAs (circRNAs) are a sort of long, non-coding RNA molecules with a covalently closed continuous ring structure without 5'-3' polarity and poly-A tail. The modulative role of circRNAs in malignant diseases has been elucidated by many studies in recent years via bioinformatics and high-throughput sequencing technologies. Generally, circRNA affects the proliferative, invasive, and migrative capacity of malignant cells via various mechanisms, exhibiting great potential as novel biomarkers in the diagnoses or treatments of malignancies. Meanwhile, autophagy preserves cellular homeostasis, serving as a vital molecular process in tumor progression. Mounting studies have demonstrated that autophagy can not only contribute to cancer cell survival but can also induce autophagic cell death in specific conditions. A growing number of research studies have indicated that there existed abundant associations between circRNAs and autophagy. Herein, we systemically reviewed and discussed recent studies on this topic in different malignancies and concluded that the circRNA-autophagy axis played crucial roles in the proliferation, metastasis, invasion, and drug or radiation resistance of different tumor cells.

3.
J Invest Surg ; 35(5): 1163-1169, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34651541

RESUMO

OBJECTIVE: During major resection of liver carcinoma, liver regeneration (LR) is induced by various clinical and biological factors. Heme oxygenase (HO)-1 has been found as a key inducer of LR in preclinical trial. The clinical evidence for the role of HO-1 in liver dysfunction (LD) including LR is still unknown and has been included in this study. METHODS: Therefore, plasma HO-1 were monitored during perioperative period in 65 patients with hepatectomy, with 35 training and 30 validation cohorts. LD were evaluated by liver function serum markers and calculation of regeneration indices, respectively. RESULTS: In the training setting, HO-1 levels were remarkably reduced after liver resection (P < 0.001) and gradually recovered within 7 days after surgery. Preoperative HO-1 specifically predicted LD during the first week after surgery (AUC: 0.757; P = 0.01). In patients with LD and complications after surgery, HO-1 levels decreased throughout the perioperative period. In addition, we had also confirmed that low levels of HO-1 (<169 ng/ml) before surgery were associated with an increase in the incidence of postoperative LD and morbidity (P = 0.007, P = 0.045), and decrease of liver regeneration (P = 0.005). And HO-1 was an independent predictor for poor clinical outcome. CONCLUSIONS: We had provided the first clinical data verifying that human HO-1 was related to LD. Consequently, HO-1 levels can be used as effective clinical indicators to predict LD and clinical outcome, and can be used as intervention target before liver resection.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/cirurgia , Hepatectomia/efeitos adversos , Humanos , Fígado/fisiopatologia , Fígado/cirurgia , Neoplasias Hepáticas/cirurgia , Regeneração Hepática
4.
Front Cell Dev Biol ; 9: 718991, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869309

RESUMO

Hypoxia is a common feature in various tumors that regulates aggressiveness. Previous studies have demonstrated that some dysregulated long non-coding RNAs (lncRNAs) are correlated with tumor progression, including bladder cancer (BCa). However, the prognostic effect of hypoxia-related lncRNAs (HRLs) and their clinical relevance, as well as their regulatory effect on the tumor immune microenvironment, are largely unknown in BCa. A co-expression analysis between hypoxia genes and lncRNA expression, which was downloaded from the TCGA database, was performed to identify HRLs. Univariate Cox regression analysis was performed to select the most desirable lncRNAs for molecular subtype, and further LASSO analysis was performed to develop a prognostic model. This molecular subtype based on four HRLs (AC104653, AL136084, AL139393, and LINC00892) showed good performance in the tumor microenvironment and tumor mutation burden. The prognostic risk model suggested better performance in predicting BCa patients' prognosis and obtained a close correlation with clinicopathologic features. Furthermore, four of five first-line clinical chemotherapies showed different sensitivities to this model, and nine immune checkpoints showed different expression in the molecular subtypes or the risk model. In conclusion, this study indicates that this molecular subtype and risk model based on HRLs may be useful in improving the prognostic prediction of BCa patients with different clinical situations and may help to find a useful target for tumor therapy.

5.
Cancer Cell Int ; 21(1): 667, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906145

RESUMO

BACKGROUND: Increasing evidence has indicated that pyroptosis could regulate the tumor immune microenvironment (TIME) to affect the tumor development. As a highly immunogenic tumor, clear cell renal cell carcinoma (ccRCC) can benefit from immunotherapy, but related research on pyroptosis in the TIME of ccRCC is still deficient. METHODS: Available data derived from TCGA and GEO databases were analyzed to identify the different expression profiles of pyroptosis in ccRCC and normal tissues, and the correlation of pyroptosis regulators with TIME was evaluated in ccRCC. RESULTS: According to consensus clustering analysis, two differential expression levels of subtypes were identified to affect patient prognosis, and were related to histological tumor stage and grade. Immune cells were calculated by the CIBERSORT algorithm. Higher infiltrated levels of B cells naive, T cells CD4 memory resting, NK cells resting, monocytes, macrophages were observed in Cluster 1, while higher infiltrated levels of CD8+ T cells, T follicular helper cells, and Tregs were observed in Cluster 2. Gene set enrichment analysis indicated that Cluster 2 was enriched in multiple immune-related pathways, including the JAK-STAT signaling pathway. Moreover, overexpression of eight immune checkpoints was related to ccRCC development, especially in Cluster 2. As four potentially key pyroptosis regulators, AIM2, CASP5, NOD2, and GZMB were confirmed to be upregulated in ccRCC by RT-qPCR analysis and further verified by the HPA database. Further pan-cancer analysis suggested that these four pyroptosis regulators were differentially expressed and related to the TIME in multiple cancers. CONCLUSION: The present study provided a comprehensive view of pyroptosis regulators in the TIME of ccRCC, which may provide potential value for immunotherapy.

6.
Front Cell Dev Biol ; 9: 704683, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595165

RESUMO

Circular RNA (circRNA) is a newly discovered endogenous non-coding RNA (ncRNA), which is characterized with a closed circular structure. A growing body of evidence has verified the vital roles of circRNAs in human cancer. In this research, we selected circPPP1CB as a study object by circRNA sequencing and quantitative real-time PCR (qRT-PCR) validation in human bladder cancer (BC). CircPPP1CB is downregulated in BC and is negatively correlated with clinical stages and histological grades. Functionally, circPPP1CB modulated cell growth, metastasis, and epithelial-to-mesenchymal transition (EMT) process in vitro and in vivo. Mechanically, we performed various experiments to verify the circPPP1CB/miR-1307-3p/SMG1 regulatory axis. Taken together, our results demonstrated that circPPP1CB participates in tumor growth, metastasis, and EMT process by interacting with the miR-1307-3p/SMG1 axis, and that circPPP1CB might be a novel therapeutic target and diagnostic biomarker in human BC.

7.
Cell Death Discov ; 7(1): 278, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611133

RESUMO

Bladder cancer (BCa) is one of the 10 most common cancers with high morbidity and mortality worldwide. Long noncoding RNAs (lncRNAs), a large class of noncoding RNA transcripts, consist of more than 200 nucleotides and play a significant role in the regulation of molecular interactions and cellular pathways during the occurrence and development of various cancers. In recent years, with the rapid advancement of high-throughput gene sequencing technology, several differentially expressed lncRNAs have been discovered in BCa, and their functions have been proven to have an impact on BCa development, such as cell growth and proliferation, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and drug-resistance. Furthermore, evidence suggests that lncRNAs are significantly associated with BCa patients' clinicopathological characteristics, especially tumor grade, TNM stage, and clinical progression stage. In addition, lncRNAs have the potential to more accurately predict BCa patient prognosis, suggesting their potential as diagnostic and prognostic biomarkers for BCa patients in the future. In this review, we briefly summarize and discuss recent research progress on BCa-associated lncRNAs, while focusing on their biological functions and mechanisms, clinical significance, and targeted therapy in BCa oncogenesis and malignant progression.

8.
Int J Biol Sci ; 17(13): 3456-3475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512159

RESUMO

Bladder carcinoma is among the top 10 most frequently diagnosed cancer types in the world. As a phytochemical active metabolic, thymoquinone (TQ) is extracted from seeds of Nigella sativa, possessing various biological properties in a wide range of diseases. Moreover, the outstanding anti-cancer effect of TQ is attracting increasing attentions. In certain circumstances, moderate autophagy is regarded to facilitate the adaptation of malignant cells to different stressors. Conversely, closely linked with the mitochondrial membrane potential (MMP) loss, the upregulation of intracellular reactive oxygen species (ROS) is reported to activate the cell apoptosis in many cancer types. Furthermore, the vital effects of microRNAs in the pathological processes of cancer cells have also been confirmed by previous studies. The present research confirms that TQ restrains the viability, proliferation, migration and invasion through activating caspase-dependent apoptosis in bladder carcinoma cells, which is mediated by TQ induced ROS increase in bladder carcinoma cells. Furthermore, TQ is proved to block the fusion of autophagosomes and lysosomes, causing the accumulation of autophagosomes and subsequent cell apoptosis. In addition, TQ is also found to initiate the miR-877-5p/PD-L1 axis, which suppresses the epithelial mesenchymal transition (EMT) and invasion of bladder carcinoma cells. Taken together, TQ induces the apoptosis through upregulating ROS level and impairing autophagic flux, and inhibiting the EMT and cell invasion via activating the miR-877-5p/PD-L1 axis in bladder carcinoma cells.


Assuntos
Antígeno B7-H1/metabolismo , Benzoquinonas/uso terapêutico , Carcinoma/tratamento farmacológico , MicroRNAs/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Autofagia/efeitos dos fármacos , Benzoquinonas/farmacologia , Carcinoma/metabolismo , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Bexiga Urinária/metabolismo
9.
Aging (Albany NY) ; 13(17): 21251-21267, 2021 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-34510030

RESUMO

Betulinic acid (BA), a pentacyclic triterpenoid isolated from tree bark, exhibits antitumor effects against solid malignancies and triggers autophagy and/or apoptosis in human cancer cells. Nonetheless, the relationship between autophagy and apoptosis and the potential modulatory actions of BA on autophagy-dependent bladder cancer cell death remain unclear. The present study showed that BA exposure significantly suppressed viability, proliferation, and migration of EJ and T24 human bladder cancer cells. These effects reflected caspase 3-mediated apoptosis and could be attenuated or abolished by inhibiting ROS production with N-acetyl-L-cysteine, inhibiting autophagy with chloroquine, or silencing ATG7 with targeted siRNA. BA-induced autophagy was evidenced by epifluorescence imaging of lentivirus-induced expression of mCherry-GFP-LC3B and increased expression of two autophagy-related proteins, LC3B-II and TEM. Moreover, enhanced AMPK phosphorylation and decreased mTOR and ULK-1 phosphorylation suggested BA activates autophagy via the AMPK/mTOR/ULK1 pathway. Accordingly, exposure to dorsomorphin (Compound C), an AMPK inhibitor, and AICAR, an AMPK activator, respectively inhibited and stimulated BA-induced autophagy in EJ and T24 cells. The effects of Bmi-1 overexpression in vitro and decreased Bmi-1 expression in BA-treated T24 cell xenografts in nude mice suggested that downregulation of Bmi-1 is the underlying mechanism in BA-mediated, autophagy-dependent apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Triterpenos Pentacíclicos/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Autofagia/fisiologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Nus , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Pirazóis/farmacologia , Pirimidinas/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Ácido Betulínico
10.
Arch Biochem Biophys ; 711: 109016, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34411579

RESUMO

Spalt-like transcription factors (SALLs) are evolutionarily conserved proteins that participate in embryonic development. Four members of the SALL family, SALL1, SALL2, SALL3, and SALL4, are involved in cellular apoptosis, angiogenesis, invasion, and metastasis of tumors. We used the TCGA pan-cancer data to conduct a comprehensive analysis of SALL genes. High heterogeneity in the expression of these genes was observed across various cancers, SALL1 and SALL2 were downregulated, whereas SALL4 was upregulated. Moreover, we verified that SALL4 was commonly associated with survival disadvantage, whereas others were linked to a better prognosis. In renal cancer, SALL1, SALL2, and SALL3 showed downregulation, suggesting that they acted as tumor suppressors. Furthermore, SALLs were associated with immune infiltrate subtypes, with a close association between different degrees of infiltration of stromal cells and immune cells. DNA and RNA analyses in different tumors suggested different degrees of negative or positive correlation with tumor stem cell-like features. Finally, we revealed that SALLs were related to cancer cell resistance. Our results highlight the necessity to further study each SALL gene as a separate entity in specific types of cancer. Although this article showed that SALLs could be promising targets for cancer therapy, it needs further studies to validate the findings.


Assuntos
Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Bases de Dados Factuais/estatística & dados numéricos , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Imunidade/fisiologia , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/mortalidade , Prognóstico , Modelos de Riscos Proporcionais , Fatores de Transcrição/genética , Microambiente Tumoral/fisiologia
11.
Sci Rep ; 10(1): 14997, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929113

RESUMO

Injectable dynamic hydrogels play a key role in cell transplantation to protect the cells from shear stress during injection. However, it still remains challenging to design dynamic hydrogels with fast gelation and high stability for protecting cells under flow due to the slow formation and exchange of most dynamic bonds. Here, a novel dual-crosslinked hydrogel system with fast dynamic crosslinks is developed by using methacrylate chitosan (CHMA) and aldehyde functionalized hyaluronate (oxidized HA, OHA). Based on the cooperation of electrostatic interaction between cationic amino of chitosan and anionic carboxyl of HA and Schiff-based crosslinking through amino and aldehyde groups, the dynamic CHMA-OHA hydrogel shows rapid gelation and high injectability. Further, the CHMA-OHA hydrogel is photopolymerized for achieving a high modulus and stability. Importantly, such hydrogels loaded with stem cells remains a cell viability (~ 92%) after extrusion. These results indicate that the CHMA-OHA hydrogel is a promising tissue engineering biomaterial for therapeutic cell delivery and 3D printing of encapsulated cell scaffolds.


Assuntos
Ácido Hialurônico/química , Hidrogéis/química , Técnicas de Cultura de Tecidos/métodos , Animais , Sobrevivência Celular , Quitosana/química , Células-Tronco Mesenquimais/citologia , Metacrilatos/química , Ratos , Reologia , Bases de Schiff/química
12.
Environ Pollut ; 265(Pt A): 114842, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32497820

RESUMO

Testicular dysgenesis syndrome might be due to the fetal testis defects caused by endocrine disruptors. Here, we report the combined effects of in utero exposure to cadmium (CdCl2, Cd) and di-n-butyl phthalate (DBP) on fetal testis development in rats. Pregnant Sprague-Dawley rats were randomly divided into four groups: control, Cd, DBP (250 mg/kg/day), and Cd + DBP. Cd (0.25 mg/kg/once) was intraperitoneally injected to the dam on gestational day 12 and DBP (250 mg/kg) was daily gavaged to the dam on gestational day 12 for 10 days. Cd, DBP, and Cd + DBP lowered serum testosterone levels in male fetuses. Cd and DBP did not alter fetal Leydig cell (FLC) number, but the combined exposure led to decreased FLC number. Cd did not affect FLC aggregation while DBP caused FLC aggregation and the combined exposure worsened FLC aggregation. Cd lowered FLC mRNA (Lhcgr, Star, Cyp11a1, and Insl3) levels and DBP lowered Lhcgr, Star, Insl3, and Nr5a1 levels. DBP up-regulated Scarb1 expression without affecting Cyp11a1 while the combined exposure antagonized DBP. These two chemicals and its combination did not affect Sertoli cell number and gene (Amh, Fshr, and Sox9) expression at current doses. In conclusion, the combined exposure of Cd and DBP exerts synergically antiandrogenic effects via targeting FLC development.


Assuntos
Dibutilftalato , Testículo , Animais , Cádmio , Feminino , Feto , Células Intersticiais do Testículo , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Testosterona
13.
Chem Res Toxicol ; 32(9): 1772-1779, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31423765

RESUMO

Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants with two or more bromines attached. They are endocrine disruptors. PBDEs photodegrade into 4-bromodiphenyl ether (BDE3). Whether BDE3 impairs adrenal cortical cell function during postnatal development still remains unknown. The aim of the current study was to investigate the influence of BDE3 on adrenal cortical cell function. Sprague-Dawley rats (35 days of age, male) were orally administered with BDE3 (0, 50, 100, and 200 mg/kg/day body weight) for 21 days. BDE3 significantly increased serum aldosterone and corticosterone levels at 200 mg/kg without affecting adrenocorticotropic hormone level. Further study showed that BDE3 up-regulated Cyp11b1 at 100 and 200 mg/kg and Scarb1, Star, Cyp11b2, Cyp21, and Nr5a1 mRNA levels in the 200 mg/kg group. BDE3 also decreased the phosphorylation of AMP-activated protein kinase (AMPK) at 200 mg/kg and increased PGC-1α and phosphorylated cyclic AMP-responsive element-binding protein (CREB)/CREB at 200 mg/kg. Taken together, these findings demonstrate that BDE3 stimulates adrenal cell function likely through decreasing phosphorylation of AMPK and increasing phosphorylation of CREB.


Assuntos
Glândulas Suprarrenais/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Éteres Difenil Halogenados/toxicidade , Puberdade/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/metabolismo , Aldosterona/metabolismo , Animais , Corticosterona/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Masculino , Fosforilação/efeitos dos fármacos , Puberdade/metabolismo , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
14.
J Cell Mol Med ; 23(9): 5956-5969, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31293077

RESUMO

Leydig cells (LCs) are the primary source of testosterone in the testis, and testosterone deficiency caused by LC functional degeneration can lead to male reproductive dysfunction. LC replacement transplantation is a very promising approach for this disease therapy. Here, we report that human adipose derived stem cells (ADSCs) can be differentiated into Leydig-like cells using a novel differentiation method based on molecular compounds. The isolated human ADSCs expressed positive CD29, CD44, CD59 and CD105, negative CD34, CD45 and HLA-DR using flow cytometry, and had the capacity of adipogenic and osteogenic differentiation. ADSCs derived Leydig-like cells (ADSC-LCs) acquired testosterone synthesis capabilities, and positively expressed LC lineage-specific markers LHCGR, STAR, SCARB1, SF-1, CYP11A1, CYP17A1, HSD3B1 and HSD17B3 as well as negatively expressed ADSC specific markers CD29, CD44, CD59 and CD105. When ADSC-LCs labelled with lipophilic red dye (PKH26) were injected into rat testes which were selectively eliminated endogenous LCs using ethylene dimethanesulfonate (EDS, 75 mg/kg), the transplanted ADSC-LCs could survive and function in the interstitium of testes, and accelerate the recovery of blood testosterone levels and testis weights. These results demonstrated that ADSCs could be differentiated into Leydig-like cells by few defined molecular compounds, which might lay the foundation for further clinical application of ADSC-LC transplantation therapy.


Assuntos
Adipócitos/citologia , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/transplante , Células-Tronco/citologia , Testosterona/sangue , Tecido Adiposo/citologia , Adulto , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Células Intersticiais do Testículo/metabolismo , Masculino , Mesilatos/farmacologia , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Testículo/citologia , Testículo/metabolismo , Transplante Heterólogo
15.
Chemosphere ; 233: 261-272, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31176127

RESUMO

Aflatoxin B1 (AFB1), a potential endocrine disrupter, has been shown to induce hepatotoxicity in animal models, but the effects of AFB1 on Leydig cell function are unclear. In this study, in vivo exposure to AFB1 at 15 and 150 µg/kg/day lowered serum testosterone (T), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels, reduced Leydig cell number, and down-regulated the expression of testosterone biosynthesis-related genes. In vitro study showed that AFB1 (10 µM) significantly increased ROS levels, and decreased T production in Leydig cells by suppressing certain T-biosynthesis gene expressions. Moreover, AFB1 induced Leydig cell apoptosis through lowering pAMPK/AMPK ratio and increasing pmTOR/mTOR ratio, and then further up-regulating autophagy and apoptosis proteins, LC3, BECLIN 1, and BAX, as well as down-regulating autophagy flux protein P62 and anti-apoptosis protein BCL-2. AFB1-induced toxicity in Leydig cells was characterized by inhibiting T-biosynthesis gene expression, reducing Leydig cell number, promoting ROS production, and inducing cell apoptosis via suppressing AMPK/mTOR-mediated autophagy flux pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aflatoxina B1/toxicidade , Autofagia/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/fisiologia , Proteína Beclina-1/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/patologia , Hormônio Luteinizante/sangue , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Testosterona/sangue , Testosterona/genética , Testosterona/metabolismo
16.
Chemosphere ; 230: 519-526, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31125880

RESUMO

Tebuconazole is a triazole compound used agriculturally to treat plant pathogenic fungi. However, whether pubertal exposure to tebuconazole affects Leydig cell development remains unknown. Here, we exposed male Sprague-Dawley rats at 35 days of age to 0, 25, 50, or 100 mg kg-1 day-1 tebuconazole for 21 days. Tebuconazole exposure increased serum testosterone level but lowered estradiol level at a dose of 100 mg kg-1, without affecting serum luteinizing hormone and follicle-stimulating hormone concentrations. Tebuconazole up-regulated the expression of testicular Cyp11a1, Hsd11b1, and Fshr genes as well as their proteins at a dose of 100 mg kg-1. However, tebuconazole did not stimulate the proliferation of Leydig cells. Tebuconazole in vitro inhibits aromatase activity in primary rat Leydig cells with IC50 value of 40 µmol/L. In conclusion, tebuconazole exposure stimulates pubertal Leydig cell differentiation via inhibiting aromatase activity.


Assuntos
Aromatase/metabolismo , Fungicidas Industriais/toxicidade , Testículo/efeitos dos fármacos , Testosterona/sangue , Triazóis/toxicidade , Envelhecimento/sangue , Animais , Diferenciação Celular/efeitos dos fármacos , Hormônio Foliculoestimulante/sangue , Expressão Gênica/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/enzimologia , Hormônio Luteinizante/sangue , Masculino , Ratos , Ratos Sprague-Dawley , Testículo/enzimologia , Testículo/crescimento & desenvolvimento , Regulação para Cima
17.
Cell Death Dis ; 10(3): 220, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833541

RESUMO

Leydig cells (LCs) play crucial roles in producing testosterone, which is critical in the regulation of male reproduction and development. Low levels of testosterone will lead to male hypogonadism. LC transplantation is a promising alternative therapy for male hypogonadism. However, the source of LCs limits this strategy for clinical applications. Thus far, others have reported that LCs can be derived from stem cells by gene transfection, but the safe and effective induction method has not yet been reported. Here, we report that Leydig-like cells can be derived from human induced pluripotent stem cells (iPSCs) using a novel differentiation protocol based on molecular compounds. The iPSCs-derived Leydig-like cells (iPSC-LCs) acquired testosterone synthesis capabilities, had the similar gene expression profiles with LCs, and positively expressed Leydig cell lineage-specific protein markers LHCGR, STAR, SCARB1, SF-1, CYP11A1, HSD3B1, and HSD17B3 as well as negatively expressed iPSC-specific markers NANOG, OCT4, and SOX2. When iPSC-LCs labeled with lipophilic red dye (PKH26) were transplanted into rat testes that were selectively eliminated endogenous LCs using EDS (75 mg/kg), the transplanted iPSC-LCs could survive and function in the interstitium of testes, and accelerate the recovery of serum testosterone levels and testis weights. Collectively, these findings demonstrated that the iPSCs were able to be differentiated into Leydig-like cells by few defined molecular compounds, which may lay the safer groundwork for further clinical application of iPSC-LCs for hypogonadism.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células Intersticiais do Testículo/citologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Perfilação da Expressão Gênica , Humanos , Células Intersticiais do Testículo/transplante , Masculino , Ratos , Testículo/citologia , Testosterona/sangue
18.
Cell Tissue Res ; 375(2): 397-408, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30244317

RESUMO

As the theory of cancer stem cells (CSCs) is maturing, CSC-targeted therapy is emerging as an important therapeutic strategy and seeking the ideal method for rapid enrichment and purification of CSCs has become crucial. So far, based on the known CSC phenotypes and biological characteristics, the methods for enrichment CSCs mainly include low adhesion culture, low oxygen culture, chemotherapy drug stimulation and side population (SP) sorting but these methods cannot realize quick enrichment of the desired CSCs. Herein, we adopt a novel method that efficiently enriches a certain amount of CSCs through agarose multi-well dishes using rubber micro-molds to make cancer cells into cell spheroids (3D). These 3D cancer cell spheroids in the proportions of expression of CSC biomarkers (single stain of CD44, CD44v6 and CD133 or double stain of both CD44 and CD133) were significantly higher than those of the conventional adherent culture (2D) using flow cytometry analysis. In addition, the expression levels of stemness transcription factors such as OCT4, NANOG and SOX2 in 3D were also significantly higher than that in 2D through Western blot (WB) and quantitative polymerase chain reaction (qPCR) assays. In addition, the CSCs in 3D could form colonies with different sizes in soft agar. In conclusion, we developed a new method to enrich some kinds of CSCs, which might be a benefit for future CSC-targeted therapy studies and anti-CSC drug screening applications.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Neoplásicas/patologia , Sefarose/farmacologia , Esferoides Celulares/patologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Esferoides Celulares/metabolismo , Ensaio Tumoral de Célula-Tronco
19.
Chem Res Toxicol ; 31(12): 1315-1322, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30422632

RESUMO

Ziram is a dimethyldithiocarbamate fungicide, which may influence the male reproductive system as a potential endocrine disruptor. We interrogated the disruption of ziram on rat progenitor Leydig cell development. Prepubertal male Sprague-Dawley rats were orally treated with 0, 2, 4, or 8 mg/kg ziram for 2 weeks. We investigated the effects of ziram on serum testosterone levels, Leydig cell number, and Leydig and Sertoli cell gene and protein expression, SIRT1/PGC-1α levels, and phosphorylation of AKT1, ERK1/2, and AMPK in vivo. We also interrogated the effects of ziram on reactive oxidative species (ROS) level, apoptosis rate, and mitochondrial membrane potential of progenitor Leydig cells in vitro. Ziram decreased serum testosterone and follicle-stimulating hormone levels, the down-regulated Leydig cell-specific gene ( Lhcgr, Scarb1, Star, Cyp17a1, and Hsd17b3), and their protein expression. However, ziram stimulated anti-Müllerian hormone production. Ziram lowered SIRT1/PGC-1α and phosphorylated protein levels of AKT1. Ziram induced ROS and apoptosis and lowered the mitochondrial membrane potential of progenitor Leydig cells in vitro. In conclusion, ziram disrupts Leydig cell development during the prepubertal period potentially through the SIRT1/PGC-1α and phosphorylated AKT1 signaling.


Assuntos
Fungicidas Industriais/toxicidade , Puberdade Tardia/etiologia , Transdução de Sinais/efeitos dos fármacos , Testículo/efeitos dos fármacos , Ziram/toxicidade , Animais , Apoptose/efeitos dos fármacos , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Regulação para Baixo/efeitos dos fármacos , Fungicidas Industriais/química , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Puberdade Tardia/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Testículo/metabolismo , Testosterona/sangue , Ziram/química
20.
Chemosphere ; 211: 986-997, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30119030

RESUMO

Polybrominated diphenyl ethers are a class of brominated flame retardants that are potential endocrine disruptors. 4-Bromodiphenyl ether (BDE-3) is the most abundant photodegradation product of higher polybrominated diphenyl ethers. However, whether BDE-3 affects Leydig cell development during puberty is still unknown. The objective of this study was to explore effects of BDE-3 on the pubertal development of rat Leydig cells. Male Sprague Dawley rats (35 days of age) were gavaged daily with BDE-3 (0, 50, 100, and 200 mg/kg body weight/day) for 21 days. BDE-3 decreased serum testosterone levels (1.099 ±â€¯0.412 ng/ml at a dose of 200 mg/kg BDE-3 when compared to the control level (2.402 ±â€¯0.184 ng/ml, mean ±â€¯S.E.). BDE-3 decreased Leydig cell size and cytoplasmic size at a dose of 200 mg/kg, decreased Lhcgr, Star, Dhh, and Sox9 mRNA levels at ≥ 100 mg/kg and Scarb1, Cyp11a1, Hsd17b3, and Fshr at 200 mg/kg. BED-3 also decreased the phosphorylation of AKT1, AKT2, ERK1/2, and AMPK at 100 or 200 mg/kg. BDE-3 in vitro induced ROS generation, inhibited androgen production, down-regulated Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Srd5a1, and Akr1c14 expression in immature Leydig cells after 24-h treatment. In conclusion, the current study indicates that BDE-3 disrupts Leydig cell development via suppressing AKT, ERK1/2, and AMPK phosphorylation and inducing ROS generation.


Assuntos
Éteres Difenil Halogenados/química , Células Intersticiais do Testículo/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA