Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 165: 115122, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37413899

RESUMO

Nephrotoxicity is a major side effect of cisplatin treatment of solid tumors in the clinical setting. Long-term low-dose cisplatin administration causes renal fibrosis and inflammation. However, few specific medicines with clinical application value have been developed to reduce or treat the nephrotoxic side effects of cisplatin without affecting its tumor-killing effect. The present study analyzed the potential reno-protective effect and mechanism of asiatic acid (AA) in long-term cisplatin-treated nude mice suffering from tumors. AA treatment significantly attenuated renal injury, inflammation, and fibrosis induced by long-term cisplatin injection in tumor-bearing mice. AA administration notably suppressed tubular necroptosis and improved the autophagy-lysosome pathway disruption caused by chronic cisplatin treatment in tumor-transplanted nude mice and HK-2 cells. AA promoted transcription factor EB (TFEB)-mediated lysosome biogenesis and reduced the accumulation of damaged lysosomes, resulting in enhanced autophagy flux. Mechanistically, AA increased TFEB expression by rebalancing Smad7/Smad3, whereas siRNA inhibition of Smad7 or TFEB abolished the effect of AA on autophagy flux in HK-2 cells. In addition, AA treatment did not weaken, but actually enhanced the anti-tumor effect of cisplatin, as evidenced by the promoted tumor apoptosis and inhibited proliferation in nude mice. In summary, AA alleviates cisplatin-induced renal fibrosis in tumor-bearing mice by improving the TFEB-mediated autophagy-lysosome pathway.


Assuntos
Cisplatino , Neoplasias , Camundongos , Animais , Cisplatino/farmacologia , Camundongos Nus , Autofagia , Fibrose , Neoplasias/metabolismo , Inflamação/metabolismo , Lisossomos/metabolismo
2.
Lupus Sci Med ; 9(1)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35414608

RESUMO

OBJECTIVE: Lupus nephritis (LN) is a major complication and cause of death among patients with SLE. This research used in vivo and in vitro experiments to explore the therapeutic potential of metformin in kidney injury from LN-induced inflammation. METHODS: In vivo study, 8-week-old MRL/MpJ-Faslpr/J (MRL/lpr) mice were randomly divided into two groups (n=12 each): daily administration of 0.3 mg/mL metformin in drinking water and control (water only). Body weight and urinary samples were measured biweekly. Mice were sacrificed after 8-week treatment to harvest serum, lymph nodes, spleen and kidneys. In vitro study, human kidney-2 (HK-2) cells were pretreated with 1 mM metformin for 1 hour and then stimulated with 20 µg/mL lipopolysaccharides (LPS) or 10 ng/mL tumour necrosis factor-α (TNF-α) for another 48 hours. Protein was collected for subsequent analysis. RESULTS: We found that metformin administration improved renal function in MRL/lpr lupus-prone mice, measured by decreased urea nitrogen and urinary proteins. Metformin reduced immunoglobulin G and complement C3 deposition in glomeruli. The treatment also downregulated systemic and renal inflammation, as seen in decreased renal infiltration of F4/80-positive macrophages and reduced splenic and renal MCP-1 (monocyte chemoattractant protein-1) and TNF-α, and renal IL-1ß (interleukin 1ß) expression. Metformin administration decreased renal expression of necroptosis markers p-RIPK1 (phosphorylated receptor-interacting protein kinase 1) and p-MLKL, along with tubular injury marker KIM-1 (kidney injury molecule-1) in lupus mice. In addition, metformin alleviated the necroptosis of HK-2 cells stimulated by LPS and TNF-α, evidencing by a decrease in the expression of necroptosis markers p-RIPK1, p-RIPK3 and p-MLKL, and the inflammasome-related markers NLRP3 (NLR family pyrin domain containing 3), ASC (apoptosis-associated speck-like protein containing a CARD), caspase-1. Mechanistically, metformin treatment upregulated p-AMPK (phosphorylated AMP-activated protein kinase) and downregulated p-STAT3 (phosphorylated signal transducer and activator of transcription 3) expression in the kidneys. Moreover, AMPKα2 knockdown abolished the protective effects of metformin in vitro. CONCLUSIONS: Metformin alleviated kidney injury in LN though suppressing renal necroptosis and inflammation via the AMPK/STAT3 pathway.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Metformina , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Animais , Humanos , Inflamação , Rim/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/uso terapêutico , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Nefrite Lúpica/complicações , Nefrite Lúpica/tratamento farmacológico , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Camundongos Endogâmicos MRL lpr , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/farmacologia , Fator de Transcrição STAT3/uso terapêutico , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/uso terapêutico
3.
Indoor Air ; 32(1): e12956, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34783390

RESUMO

Research on individual level polycyclic aromatic hydrocarbons (PAHs) exposure is scarce. Moreover, the independent contribution of ambient- and indoor-origin PAHs to personal exposure remains poorly studied. We performed simultaneous ambient, residential indoor, and personal exposure measurements in a panel of healthy adults to investigate particle-bound PAHs, focusing on their carcinogenic congeners (cPAHs). Average PAH concentrations were much higher in ambient and residential indoor than personal exposure, with distinct seasonal variations. We employed chrysene as a tracer to investigate residential indoor and personal PAHs exposure by origin. Personal cPAH exposure was largely attributable to ambient-origin exposures (95.8%), whereas a considerable proportion of residential indoor PAHs was likely attributable to indoor emissions (33.8%). Benzo[a]pyrene equivalent (BaPeq) concentrations of cPAH accounted for 95.2%-95.6% of total carcinogenic potential. Uncertainties in estimated PAHs (and BaPeq) exposure and cancer risks for adults were calculated using the Monte Carlo simulation. Cancer risks attributable to ambient, residential indoor, and personal cPAH inhalation exposures ranged from 4.0 × 10-6 to 1.0 × 10-5 . A time-activity weighted model was employed for personal PAH exposure estimations. Estimated cPAH exposures demonstrate high cancer risks for adults in Hong Kong, suggesting that exposure to indoor-generated PAHs should be of great concern to the general population.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Hong Kong , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco
4.
J Cell Mol Med ; 25(12): 5729-5743, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33949118

RESUMO

Cyclosporine A (CsA) is an immunosuppressor widely used for the prevention of acute rejection during solid organ transplantation. However, severe nephrotoxicity has substantially limited its long-term usage. Recently, an impaired autophagy pathway was suggested to be involved in the pathogenesis of chronic CsA nephrotoxicity. However, the underlying mechanisms of CsA-induced autophagy blockade in tubular cells remain unclear. In the present study, we observed that CsA suppressed the activation and expression of transcription factor EB (TFEB) by increasing the activation of mTOR, in turn promoting lysosomal dysfunction and autophagy flux blockade in tubular epithelial cells (TECs) in vivo and in vitro. Restoration of TFEB activation by Torin1-mediated mTOR inhibition significantly improved lysosomal function and rescued autophagy pathway activity, suppressing TEC injury. In summary, targeting TFEB-mediated autophagy flux represents a potential therapeutic strategy for CsA-induced nephrotoxicity.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclosporina/toxicidade , Células Epiteliais/patologia , Túbulos Renais/patologia , Lisossomos/patologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Imunossupressores/toxicidade , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Serina-Treonina Quinases TOR/genética
5.
Autophagy ; 17(9): 2325-2344, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33043774

RESUMO

Macroautophagy/autophagy dysregulation has been noted in diabetic nephropathy; however, the regulatory mechanisms controlling this process remain unclear. In this study, we showed that SMAD3 (SMAD family member 3), the key effector of TGFB (transforming growth factor beta)-SMAD signaling, induces lysosome depletion via the inhibition of TFEB-dependent lysosome biogenesis. The pharmacological inhibition or genetic deletion of SMAD3 restored lysosome biogenesis activity by alleviating the suppression of TFEB, thereby protecting lysosomes from depletion and improving autophagic flux in renal tubular epithelial cells in diabetic nephropathy. Mechanistically, we found that SMAD3 directly binds to the 3'-UTR of TFEB and inhibits its transcription. Silencing TFEB suppressed lysosome biogenesis and resulted in a loss of the protective effects of SMAD3 inactivation on lysosome depletion under diabetic conditions. In conclusion, SMAD3 promotes lysosome depletion via the inhibition of TFEB-dependent lysosome biogenesis; this may be an important mechanism underlying autophagy dysregulation in the progression of diabetic nephropathy.Abbreviations: AGEs: advanced glycation end products; ATP6V1H: ATPase H+ transporting V1 subunit H; CTSB: cathepsin B; ChIP: chromatin immunoprecipitation; Co-BSA: control bovine serum albumin; DN: diabetic nephropathy; ELISA: enzyme-linked immunosorbent assay; FN1: fibronectin 1; HAVCR1/TIM1/KIM-1: hepatitis A virus cellular receptor 1; LAMP1: lysosomal associated membrane protein 1; LMP: lysosome membrane permeabilization; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; NC: negative control; SIS3: specific inhibitor of SMAD3; SMAD3: SMAD family member 3; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TECs: tubular epithelial cells; TFEB: transcription factor EB; TGFB1: transforming growth factor beta 1; TGFBR1: transforming growth factor beta receptor 1; UTR: untranslated region; VPS11: VPS11 core subunit of CORVET and HOPS complexes.


Assuntos
Autofagia , Diabetes Mellitus , Nefropatias Diabéticas , Proteína Smad3 , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diabetes Mellitus/metabolismo , Células Epiteliais/metabolismo , Humanos , Lisossomos/metabolismo , Transdução de Sinais , Proteína Smad3/metabolismo
6.
Lipids Health Dis ; 19(1): 150, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32580730

RESUMO

BACKGROUND: Inflammation and oxidative stress play predominant roles in the initiation and progression of ischaemia/reperfusion (I/R) injury, with nuclear factor kappa B (NF-κB) serving as a crucial mediator. Overexpression of the inhibitor of κB alpha (IκBα) gene is hypothesized to have protective effects against apoptosis and autophagy in cardiomyocytes subjected to hydrogen peroxide (H2O2) by inhibiting the NF-κB pathway. METHODS: The IκBαS32A, S36A gene was transfected via adeno-associated virus serotype 9 (AAV9) delivery into neonatal rat ventricular cardiomyocytes (NRVMs) prior to H2O2 treatment. NRVMs were divided into control, H2O2, GFP + H2O2, IκBα+H2O2, and pyrrolidine dithiocarbamate (PDTC) + H2O2 groups. Nuclear translocation of the NF-κB p65 subunit was evaluated by immunofluorescence and Western blotting. Cell viability was assessed by Cell Counting Kit-8 assay. Supernatant lactate dehydrogenase (LDH) and intracellular malondialdehyde (MDA) were measured to identify H2O2-stimulated cytotoxicity. Apoptosis was determined by Annexin V-PE/7-AAD staining, and the mitochondrial membrane potential (ΔΨm) was detected by JC-1 staining. Western blotting was used to detect apoptosis- and autophagy-related proteins. RESULTS: IκBα transfection significantly increased cell viability and ΔΨm but decreased the supernatant LDH and cellular MDA levels in cardiomyocytes exposed to H2O2. Meanwhile, IκBα overexpression decreased H2O2-induced apoptosis by upregulating the Bcl-2/Bax ratio and reduced autophagy by downregulating the expression of Beclin-1 and the LC3-II/LC3-I ratio. These effects partly accounted for the ability of IκBα to inhibit the NF-κB signalling pathway, as evidenced by decreases in p65 phosphorylation and nuclear translocation. Indeed, the effects of inactivation of NF-κB signalling with the specific inhibitor PDTC resembled the cardioprotective effects of IκBα during H2O2 stimulation. CONCLUSION: IκBα overexpression can ameliorate H2O2-induced apoptosis, autophagy, oxidative injury, and ΔΨm loss through inhibition of the NF-κB signalling pathway. These findings suggest that IκBα transfection can result in successful resistance to oxidative stress-induced damage by inhibiting NF-κB activation, which may provide a potential therapeutic target for the prevention of myocardial I/R injury.


Assuntos
Peróxido de Hidrogênio/farmacologia , Miócitos Cardíacos/patologia , Inibidor de NF-kappaB alfa/genética , NF-kappa B/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Células Cultivadas , Dependovirus/genética , Regulação da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Pirrolidinas/farmacologia , Ratos Sprague-Dawley , Tiocarbamatos/farmacologia , Transfecção
7.
Med Sci Monit ; 26: e922673, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32555132

RESUMO

BACKGROUND Cell cycle arrest and autophagy have been demonstrated to be involved in various transforming growth factor (TGF)-ß-mediated phenotype alterations of tubular epithelial cells (TECs) and tubulointerstitial fibrosis. But the relationship between cell cycle arrest and the autophagy induced by TGF-ß has not been explored well. MATERIAL AND METHODS The effects of autophagy inhibition on TGF-ß-induced cell cycle arrest in TECs were explored in vitro. Human kidney-2 (HK-2) cells were stimulated by TGF-ß with or without a combined treatment of autophagy inhibitor chloroquine (CQ) or bafilomycin A1 (Baf). RESULTS Autophagy inhibition by CQ or Baf promotes the suppression of growth in TGF-ß-treated HK-2 cells, as detected by the Cell Counting Kit-8 (CCK-8) method. In addition, CQ or Baf stimulation enhances G1 arrest in TGF-ß treated HK-2 cells, as investigated using propidium iodide (PI) staining and flow cytometry, which was further confirmed by a decrease in the expression of phosphorylated retinoblastoma protein (p-RB) and cyclin-dependent kinase 4 (CDK4). The upregulation of p21 induced by CQ or Baf may mediate an enhanced G1 arrest in TGF-ß treated HK-2 cells. Western blot analysis showed that TGF-ß-induced expression of extracellular matrix fibronectin was notably upregulated in the presence of autophagy inhibitors. CONCLUSIONS Inhibition of autophagy sensitizes the TECs to G1 arrest and proliferation suppression induced by TGF-ß that contributes to the induction of tubulointerstitial fibrosis.


Assuntos
Autofagia/efeitos dos fármacos , Cloroquina/farmacologia , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Macrolídeos/farmacologia , Insuficiência Renal Crônica/patologia , Fator de Crescimento Transformador beta/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fibronectinas/efeitos dos fármacos , Fibronectinas/metabolismo , Fibrose , Humanos , Técnicas In Vitro , Túbulos Renais/citologia , Insuficiência Renal Crônica/metabolismo , Proteína do Retinoblastoma/efeitos dos fármacos , Proteína do Retinoblastoma/metabolismo
8.
Environ Res ; 164: 24-31, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29462750

RESUMO

BACKGROUND: Given the lack of research on the personal exposure to fine particles (PM2.5) in Hong Kong, we examined the association between short-term personal exposure to PM2.5 and their constituents and inflammation in exhaled breath in a sample of healthy adult residents. METHOD: Forty-six participants underwent personal PM2.5 monitoring for averagely 6 days to obtain 276 samples. Fractional exhaled nitric oxide (FeNO), a biomarker of inflammation in exhaled breath, was measured at the end of each 24-h personal monitoring. PM2.5 chemical constituents, including organic carbon, elemental carbon, 16 polycyclic aromatic hydrocarbons (PAHs), and 6 phthalate esters, were speciated from the personal samples collected. A mixed-effects model was used to estimate the association of PM2.5 and their constituents with FeNO. The comparison was also made with parallel analyses using ambient concentrations. RESULTS: Personal exposures to PM2.5 (28.1 ±â€¯23.3 µg/m3) were higher than the ambient levels (13.3 ±â€¯6.4 µg/m3) monitored by stations. The composition profile and personal-to-ambient concentration ratio varied among subjects with different occupations. An interquartile range (IQR) change in personal exposure to PM2.5 was positively associated with 12.8% increase in FeNO (95% confidence interval, CI: 5.5-20.7%), while nil association was found for ambient PM2.5. Among the constituents measured, only the carcinogenic PAHs were significantly associated with 12% increase in FeNO responses (95% CI, 0.0-25.6%). CONCLUSION: In conclusion, our study provides the first understanding about personal exposure to PM2.5 and possible sources in Hong Kong. The results also showed that personal exposure to PM2.5 and c-PAHs were linked to increased FeNO levels among healthy adults.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Poluentes Atmosféricos/análise , Hong Kong , Humanos , Inflamação , Material Particulado/análise
9.
Clin Exp Pharmacol Physiol ; 42(10): 1108-17, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26173818

RESUMO

Adeno-associated virus (AAV) has become one of the most promising gene transfer tools for gene therapy. This work aims to evaluate tropism, gene transfer efficiency and safety of AAV9 vectors produced with recombinant baculovirus (rBac)-based system. AAV9-CMV-GFP and AAV9-CBA-GFP were produced using a rBac system, 1 × 10(11) particles of each vectors were administered intravenously (i.v.) into mice and animals were killed at 1, 2, 3, 4, 5 and 8 weeks after administration. The GFP expression in different organs was analyzed by fluorescence imaging and Western blot. Viral genomic quantities were measured using qPCR. In vitro transduction efficiency of AAV9 vectors in primary cardiomyocytes and hepatocytes was determined by flow cytometry. Toxicity of AAV9 vectors was evaluated by determining certain cardiac and liver injury biomarkers and renal function test in vivo and TUNEL analysis in vitro. The data showed that AAV9 viral particles packaged by the rBac system were fully functional in vivo and in vitro. The CMV promoter predominantly induced higher cardiac GFP transgene expression and DNA copy numbers while the CBA promoter resulted in robust GFP expression and high vector DNA copy numbers in mouse liver, both in a time-dependent increased manner. Such distinct preferential effects were also observed in the heart and liver as early as 3 and 5 days after co-infection. Both the AAV9-CMV and AAV9-CBA viral packages did not induce heart, liver and renal damage and cell apoptosis. These results indicated that AAV9-CMV can efficiently and safely direct cardiac gene transfer, whereas AAV9-CBA is preferential for liver gene delivery.


Assuntos
Dependovirus/genética , Hepatócitos/metabolismo , Miócitos Cardíacos/metabolismo , Regiões Promotoras Genéticas/genética , Transdução Genética/métodos , Transgenes/genética , Actinas/genética , Animais , Apoptose/genética , Galinhas/genética , Citomegalovirus/genética , Dependovirus/fisiologia , Vetores Genéticos/genética , Hepatócitos/citologia , Hepatócitos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia , Miócitos Cardíacos/virologia , Segurança , Tropismo Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA