Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
PLoS One ; 19(5): e0303556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753858

RESUMO

Echinatin is an active ingredient in licorice, a traditional Chinese medicine used in the treatment of inflammatory disorders. However, the protective effect and underlying mechanism of echinatin against acute lung injury (ALI) is still unclear. Herein, we aimed to explore echinatin-mediated anti-inflammatory effects on lipopolysaccharide (LPS)-stimulated ALI and its molecular mechanisms in macrophages. In vitro, echinatin markedly decreased the levels of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated murine MH-S alveolar macrophages and RAW264.7 macrophages by suppressing inducible nitric oxide synthase and cyclooxygenase-2 (COX-2) expression. Furthermore, echinatin reduced LPS-induced mRNA expression and release of interleukin-1ß (IL-1ß) and IL-6 in RAW264.7 cells. Western blotting and CETSA showed that echinatin repressed LPS-induced activation of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) pathways through targeting transforming growth factor-beta-activated kinase 1 (TAK1). Furthermore, echinatin directly interacted with Kelch-like ECH-associated protein 1 (Keap1) and activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway to enhance heme oxygenase-1 (HO-1) expression. In vivo, echinatin ameliorated LPS-induced lung inflammatory injury, and reduced production of IL-1ß and IL-6. These findings demonstrated that echinatin exerted anti-inflammatory effects in vitro and in vivo, via blocking the TAK1-MAPK/NF-κB pathway and activating the Keap1-Nrf2-HO-1 pathway.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , MAP Quinase Quinase Quinases , Transdução de Sinais , Animais , Masculino , Camundongos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Anti-Inflamatórios/farmacologia , Heme Oxigenase-1/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
2.
Aging Clin Exp Res ; 35(11): 2603-2611, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37656411

RESUMO

BACKGROUND: Systemic inflammatory response syndrome (SIRS) greatly affects postoperative lives of afflicted aged patients. This study aimed to determine whether preoperative high hs-CRP/HDL ratio (CHR) was associated with an increased risk of postoperative SIRS in the elderly population. METHODS: This retrospective cohort study included data on patients aged ≥ 65 years who underwent general anesthesia surgery at two clinical centers between January 2015 and September 2020. The primary exposure was preoperative CHR which was divided into two groups (≤ 12.82 and > 12.82) based on its normal range in our hospital, and the primary outcome was the incidence of postoperative SIRS. Targeted maximum likelihood estimation analyses were used to model the exposure-outcome relationship. RESULTS: The analysis included 5595 elderly patients, of whom 1410 (25.20%) developed SIRS within three postoperative days. Targeted maximum likelihood estimation analysis revealed that elderly patients with CHR > 12.82 vs. CHR ≤ 12.82 was associated with increased risk of postoperative SIRS (aOR = 1.40, 95% CI [1.33, 1.48], P < 0.001). Those results were consistent both in subgroup analyses and sensitivity analyses. Compared with patients with CHR ≤ 12.82, patients with CHR > 12.82 had a higher prevalence of postoperative SIRS (49.06% vs. 22.70%), postoperative in-hospital mortality (3.40% vs. 0.65%), a longer hospital stay after surgery [10 (IQR, 6-16) vs. 8 (IQR, 5-11) days] and higher direct medical cost [10070 (IQR, 6878-15577) vs. 7117 (IQR, 4079-10314) euros, all P < 0.001]. CONCLUSIONS: In elderly patients, preoperative CHR > 12.82 was significantly associated with a higher risk of postoperative SIRS.


Assuntos
Proteína C-Reativa , Síndrome de Resposta Inflamatória Sistêmica , Humanos , Idoso , Síndrome de Resposta Inflamatória Sistêmica/epidemiologia , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Proteína C-Reativa/análise , Estudos Retrospectivos , Complicações Pós-Operatórias/etiologia , Incidência
3.
Small Methods ; 7(7): e2201706, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37093226

RESUMO

Significant progress is made in drug delivery systems, but they still face problems such as poor stability in vivo, off-target drugs, and difficulty in crossing biological barriers. It is urgent to realize efficient targeted delivery and precisely controlled sustained release of drugs by using the integrated nanoplatform. Theranostic nanoplatform is a new biomedical technology that combines diagnosis or monitoring of diseases with treatment. Here, an integrated strategy of diagnosis and treatment is reported for delivering NIR-II imaged and therapeutic AgAuSe quantum dots (QDs) carried by peptidoglycan multilayer networks of bacteria to hitchhike circulating neutrophils for targeting the tumor. The assembled nanomaterials have good stability, which can not only initiate endogenous cells for drug delivery and achieve efficient targeting, but also guide drug imaging with excellent fluorescence property. Meanwhile, the elimination of established solid tumor is achieved with the administration of sonodynamic therapy without recurrence. This drug system expands the application of endogenous cell to participate in drug delivery system. Thus, the assembly strategy demonstrates the potential of endogenous neutrophils in functioning as natural drug vehicles and the application of NIR-II fluorescent QDs in biomedical engineering.


Assuntos
Nanopartículas , Neoplasias , Pontos Quânticos , Humanos , Peptidoglicano , Neutrófilos/patologia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
4.
Clin Sci (Lond) ; 137(5): 367-383, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857175

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a respiratory condition caused by severe endothelial barrier dysfunction within the lung. In ARDS, excessive inflammation, tissue edema, and immune cell influx prevents endothelial cell regeneration that is crucial in repairing the endothelial barrier. However, little is known about the molecular mechanism that underpin endothelial cell regeneration in ARDS. METHODS: R-based bioinformatics tools were used to analyze microarray-derived transcription profiles in human lung microvascular endothelial cells (HLMVECs) subjected to non-treatment or lipopolysaccharide (LPS) exposure. We generated endothelial cell-specific interferon regulatory factor 1 (Irf1) knockout (Irf1EC-/-) and Irf1fl/fl control mice for use in an endotoxemic murine model of acute lung injury (ALI). In vitro studies (qPCR, immunoblotting, and ChIP-qPCR) were conducted in mouse lung endothelial cells (MLECs) and HLMVECs. Dual-luciferase promoter reporter assays were performed in HLMVECs. RESULTS: Bioinformatics analyses identified IRF1 as a key up-regulated gene in HLMVECs post-LPS exposure. Endothelial-specific knockout of Irf1 in ALI mice resulted in enhanced regeneration of lung endothelium, while liposomal delivery of endothelial-specific Irf1 to wild-type ALI mice inhibited lung endothelial regeneration in a leukemia inhibitory factor (Lif)-dependent manner. Mechanistically, we demonstrated that LPS-induced Stat1Ser727 phosphorylation promotes Irf1 transactivation, resulting in downstream up-regulation of Lif that inhibits endothelial cell proliferation. CONCLUSIONS: These results demonstrate the existence of a p-Stat1Ser727-Irf1-Lif axis that inhibits lung endothelial cell regeneration post-LPS injury. Thus, direct inhibition of IRF1 or LIF may be a promising strategy for enhancing endothelial cell regeneration and improving clinical outcomes in ARDS patients.


Assuntos
Lesão Pulmonar Aguda , Fator Regulador 1 de Interferon , Síndrome do Desconforto Respiratório , Animais , Humanos , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Células Endoteliais , Endotélio , Inflamação/tratamento farmacológico , Fator Regulador 1 de Interferon/genética , Lipopolissacarídeos/farmacologia , Pulmão , Camundongos Endogâmicos C57BL , Regeneração , Camundongos Knockout
5.
Immun Inflamm Dis ; 11(2): e781, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36840491

RESUMO

BACKGROUND AND AIM: Small ubiquitin-like modifier (SUMO)-specific protease (SENP)3 is a protease molecule that responds to reactive oxygen species (ROS) with high sensitivity. However, the role of ROS and SENP3 in the formation of nasal polyps (NPs) remains unclear. This study aimed to explore how SENP3 influenced the outcome of chronic rhinosinusitis (CRS) by altering macrophage function, that is, the formation of NPs. METHODS: The alternative activation of macrophage (M2) was detected with CD68+ CD206+ in humans and CD206+ in mice. The nasal mucosa of patients with CRS was tested using flow cytometry (CD68, CD80, and CD206) and triple-color immunofluorescence staining (CD68, CD206, and SENP3). The bone marrow-derived macrophages from SENP3 knockout and control mice were stimulated with interleukin (IL)-4 and IL-13 to analyze alternative macrophage polarization in vitro. An animal model of allergic rhinitis was constructed using SENP3 knockout mice. CD206 was detected by immunofluorescence staining. The thickening of eosinophil-infiltrated mucosa was detected by Luna staining. RESULTS: The number of CD68+ CD206+ M2 increased in the nasal mucosa of patients with CRS with NP (CRSwNP) compared with patients with CRS without NP (CRSsNP), but with no significant difference between the groups. SENP3 knockout increased the polarization of F4/80+ CD206+ M2. Meanwhile, the number of CD206+ M2 significantly increased in the allergic rhinitis model constructed using SENP3 knockout mice and controls, with a more obvious proliferation of the nasal mucosa. CONCLUSION: Downregulation of SENP3 promotes the formation of nasal polyps mediated by increasing alternative activated macrophage in nasal mucosal inflammation.


Assuntos
Pólipos Nasais , Rinite Alérgica , Rinite , Humanos , Animais , Camundongos , Espécies Reativas de Oxigênio , Mucosa Nasal , Macrófagos , Peptídeo Hidrolases , Inflamação , Cisteína Endopeptidases
6.
Small ; 19(17): e2207111, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36599616

RESUMO

Chirality transfer is of vital importance that dominates the structure and functionality of biological systems and living matters. External physical stimulations, e.g. polarized light and mechanical forces, can trigger the chirality symmetry breaking, leading to the appearance of the enantiomeric entities created from a chiral self-assembly of achiral molecule. Here, several 2D assemblies with different chirality, synthesized on Au(111) surface by using achiral building blocks - glycylglycine (digly), the simplest polypeptide are reported. By delicately tuning the kinetic factors, i.e., one-step slow/rapid deposition, or stepwise slow deposition with mild annealing, achiral square hydrogen-bond organic frameworks (HOF), homochiral rhombic HOF and racemic rectangular assembly are achieved, respectively. Chirality induction and related symmetry broken in assemblies are introduced by the handedness (H-bond configurations in principle) of the assembled motifs and then amplified to the entire assemblies via the interaction between motifs. The results show that the chirality transfer and induction of biological assemblies can be tuned by altering the kinetic factors instead of applying external forces, which may offer an in-depth understanding and practical approach to peptide chiral assembly on the surfaces and can further facilitate the design of desired complex biomolecular superstructures.

7.
Asian J Androl ; 25(1): 132-136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35532557

RESUMO

A cross-sectional study was conducted to estimate the age-stratified normal levels and age-related changes in the risk predictors of benign prostatic hyperplasia (BPH) progression. A total of 4706 male participants aged 40 years or older in Zhengzhou (China) were enrolled. The values of the International Prostate Symptom Score (IPSS), prostate-specific antigen (PSA), prostate volume (PV), and postvoid residual urine volume (PVR) significantly increased with age. Nonlinear relationships between age and IPSS scores ≥8 (P for nonlinearity = 0.046), PSA level ≥1.6 ng ml-1, PV ≥31 ml, or PVR ≥39 ml (all P for nonlinearity <0.001) were observed. After the age of 61 years, the risk indicators related to BPH progression were positively correlated with age (odds ratio [OR] >1), regardless of the predictors of the IPSS score, PSA level, PV, or PVR; and the OR values increased gradually. Therefore, after the age of 61 years, the risk predictors related to BPH progression were positively correlated with age.


Assuntos
Hiperplasia Prostática , Humanos , Masculino , Hiperplasia Prostática/epidemiologia , Hiperplasia Prostática/diagnóstico , Antígeno Prostático Específico , Estudos Transversais , População do Leste Asiático , Fatores de Risco
8.
Cell Rep ; 41(4): 111555, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288706

RESUMO

Upregulation of interleukin-17 receptor B (IL-17RB) is known to be oncogenic, while other IL-17 receptors and ligands are generally involved in pro-inflammatory pathways. We identify a mouse neutralizing monoclonal antibody (mAb) D9, which blocks the IL-17RB/IL-17B pathway and inhibits pancreatic tumorigenesis in an orthotopic mouse model. The X-ray crystal structure of the IL-17RB ectodomain in complex with its neutralizing antibody D9 shows that D9 binds to a predicted ligand binding interface and engages with the A'-A loop of IL-17RB fibronectin III domain 1 in a unique conformational state. This structure also provides important paratope information to guide the design of antibody humanization and affinity maturation of D9, resulting in a humanized 1B12 antibody with marginal affinity loss and effective neutralization of IL-17B/IL-17RB signaling to impede tumorigenesis in a mouse xenograft model.


Assuntos
Interleucina-17 , Receptores de Interleucina-17 , Humanos , Camundongos , Animais , Receptores de Interleucina-17/metabolismo , Interleucina-17/metabolismo , Fibronectinas/metabolismo , Ligantes , Anticorpos Neutralizantes/metabolismo , Regulação Neoplásica da Expressão Gênica , Carcinogênese , Anticorpos Monoclonais/metabolismo
9.
Sci Rep ; 12(1): 18011, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289396

RESUMO

Programmed death-ligand 1 (PD-L1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT) are two potential targets for cancer immunotherapy, early clinical studies showed the combination therapy of anti-PD-L1 and anti-TIGIT had synergistic efficacy both in the terms of overall response rate (ORR) and overall survival (OS). It is rational to construct bispecific antibodies targeting PD-L1 and TIGIT, besides retaining the efficacy of the combination therapy, bispecific antibodies (BsAbs) can provide a new mechanism of action, such as bridging between tumor cells and T/NK cells. Here, we developed an IgG1-type bispecific antibody with optimal cytotoxicity. In this study, we thoroughly investigated 16 IgG-VHH formats with variable orientations and linker lengths, the results demonstrated that (G4S)2 linker not only properly separated two binding domains but also had the highest protein yield. Moreover, VHH-HC orientation perfectly maintained the binding and cytotoxicity activity of the variable domain of the heavy chain of heavy-chain-only antibody (VHH) and immunoglobulin G (IgG). Following treatment with BiPT-23, tumor growth was significantly suppressed in vivo, with more cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells infiltration, and selective depletion of Regulatory T cells (Tregs). BiPT-23 represents novel immunotherapy engineered to prevent hyperprogression of cancer with PD-1 blockade, and preferentially killed PD-L1+ tumor cells, and TIGIT+ Tregs but maintained CD11b+F4/80+ immune cells within the tumor microenvironment (TME).


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1 , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Imunoglobulina G/uso terapêutico , Microambiente Tumoral , Receptores Imunológicos
10.
Biomed Pharmacother ; 149: 112847, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35364376

RESUMO

OBJECTIVE: Cantleyoside (CA) is a kind of iridoid glycosides in Pterocephalus hookeri (C. B. Clarke) Höeck. The purpose of this study was to investigate the effects of CA on human rheumatoid arthritis fibroblast synovial cells (HFLS-RA). METHODS: Cell proliferation of HFLS-RA was assessed by CCK-8. ELISA was used to detect cytokines NO, TNF-α, IL-1ß/6, MCP-1, MMP-1/3/9 and metabolism-related ATPase activities and ATP levels. JC-1, DCFH-DA, Fluo-3 AM and Calcein AM probes were used to detect mitochondrial membrane potential (MMP), reactive oxygen species (ROS), Ca2+ and mitochondrial permeability conversion pore (MPTP), respectively. Isolated mitochondria assay was used to detect mitochondrial swelling. Oxygen consumption rate (OCR), extracellular acidification rate (ECAR) and real-time ATP production were measured using a Seahorse analyzer. Apoptosis was detected by TUNEL and Hoechst staining. Western blot was used to detect the expressions of AMPK/p-AMPK, Sirt 1, IκBα, NF-κB p65/p-NF-κB p65, Bcl-2 and Bax. Cytoplasmic nuclear isolation was also performed to detect the translocation of NF-κB. RESULTS: CA significantly suppressed cell proliferation and the levels of NO, TNF-α, IL-1ß/6, MCP-1 and MMP-1/3/9 in HFLS-RA. In addition, CA promoted the apoptosis of HFLS-RA by increasing TUNEL and Hoechst positive cells and the ratio of Bax/Bcl-2. Inhibition of energy metabolism in HFLS-RA by CA reduced OCR, ECAR and real-time ATP generation rate. Importantly, CA promoted p-AMPK and Sirt 1 expression, inhibited IκBα degradation to reduce p-NF-κB and translocation. CONCLUSION: The results suggest that CA activates the AMPK/Sirt 1/NF-κB pathway by promoting mitochondrial dysfunction, thereby exerting anti-inflammatory and pro-apoptotic effects.


Assuntos
Artrite Reumatoide , Sirtuínas , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Apoptose , Artrite Reumatoide/metabolismo , Linhagem Celular , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Metaloproteinase 1 da Matriz/metabolismo , Mitocôndrias/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Sirtuínas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo
11.
J Mater Chem B ; 10(9): 1386-1392, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35142779

RESUMO

Sensitive detection of circulating tumor DNA (ctDNA) in vitro has attracted growing attention owing to its potential application in diagnostics of cancer. In this study, we synthesized hydrophilic AgInS2@ZnS core-shell quantum dot nanocrystals and magnetic Fe3O4 nanoparticles, and then the ctDNA triggered hybridization chain reaction was used to detect the CYFRA21-1 DNA associated with lung cancer. In the presence of CYFRA21-1 DNA, three hairpin structures were activated to turn on successively, resulting in the accumulation of quantum dots and eliciting considerable changes of the fluorescence signal. Compared with the conventional fluorescence detection, Fe3O4 provides magnetic adsorption properties and a large surface area for immobilizing and aggregating quantum dot nanoparticles attached to single-stranded DNA. The concentration of CYFRA21-1 is closely related to the number of quantum dots remaining after magnetic adsorption, which provides a promising approach for ctDNA quantification.


Assuntos
Neoplasias Pulmonares , Pontos Quânticos , Antígenos de Neoplasias , DNA , Humanos , Queratina-19 , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Pontos Quânticos/química , Sulfetos/química , Compostos de Zinco/química
12.
Aging (Albany NY) ; 14(1): 389-409, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35021154

RESUMO

Chordin-like 1 (CHRDL1), an inhibitor of bone morphogenetic proteins(BMPs), has been recently reported to participate in the progression of numerous tumors, however, its role in lung adenocarcinoma (LUAD) remains unclear. Our study aimed to demonstrate relationship between CHRDL1 and LUAD based on data from The Cancer Genome Atlas (TCGA). Among them, CHRDL1 expression revealed promising power for distinguishing LUAD tissues form normal sample. Low CHRDL1 was correlated with poor clinicopathologic features, including high T stage (OR=0.45, P<0.001), high N stage (OR=0.57, P<0.003), bad treatment effect (OR=0.64, P=0.047), positive tumor status (OR=0.63, P=0.018), and TP53 mutation (OR=0.49, P<0.001). The survival curve illustrated that low CHRDL1 was significantly correlative with a poor overall survival (HR=0.60, P<0.001). At multivariate Cox regression analysis, CHRDL1 remained independently correlative with overall survival. GSEA identified that the CHRDL1 expression was related to cell cycle and immunoregulation. Immune infiltration analysis suggested that CHRDL1 was significantly correlative with 7 kinds of immune cells. Immunohistochemical validation showed that CHRDL1 was abnormally elevated and negatively correlated with Th2 cells in LUAD tissues. In conclusion, CHRDL1 might become a novel prognostic biomarker and therapy target in LUAD. Moreover, CHRDL1 may improve the effectiveness of immunotherapy by regulating immune infiltration.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Bases de Dados Genéticas , Proteínas do Olho/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Idoso , Biomarcadores Tumorais , Proteínas do Olho/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Proteínas do Tecido Nervoso/genética , Transdução de Sinais , Sobrevida , Células Th2
14.
Adv Sci (Weinh) ; 8(19): e2004162, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34378353

RESUMO

Toll-like receptor 2 and 4 (TLR2, TLR4) signaling is implicated in atherosclerotic plaque formation. The two-stage master regulator Virtual Inference of Protein-activity by Enriched Regulon (VIPER) analysis of macrophage TLR2 and TLR4 signature genes integrated with coexpression network genes derived from 371 patient-derived carotid specimens identifies activated RNA polymerase II transcriptional coactivator p15 (SUB1/Sub1, PC4) as a master regulon in the atherogenic TLR response. It is found that TLR2 and TLR4 signaling is proinflammatory and proatherosclerotic in chow-fed apolipoprotein E-deficient (ApoE-/- ) mice. Through transgenic myeloid-specific Sub1 knockout in ApoE-/- mice, it is discovered that these proatherosclerotic effects of TLR2 and TLR4 signaling are mediated by Sub1. Sub1 knockout in macrophages enhances anti-inflammatory M2 macrophage polarization and cholesterol efflux. Irradiated low density lipoprotein receptor-deficient (Ldlr-/- ) mice transplanted with Sub1-/- murine bone marrow display reduced atherosclerosis. Promoter analysis reveals Sub1-dependent activation of interferon regulatory factor 1 (Irf1) transcription in a casein kinase 2 (Ck2)-dependent manner, and Sub1-knockout macrophages display decreased Irf1 expression. Artificial Irf1 overexpression in Sub1-knockout macrophages enhances proinflammatory M1 skewing and lowers cholesterol clearance. In conclusion, the TLR master regulon Sub1, and its downstream effect on the transcription factor Irf1, promotes a proinflammatory M1 macrophage phenotype and enhances atherosclerotic burden in vivo.


Assuntos
Aterosclerose/genética , Aterosclerose/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Modelos Animais de Doenças , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/genética
15.
ACS Omega ; 6(28): 18269-18280, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34308058

RESUMO

Half-Heusler alloys have recently received extensive attention because of their promising thermoelectric (TE) properties and great potential for applications requiring efficient thermoelectricity. Although the conversion efficiency of these materials can be greatly improved by doping, it is still far away from the real-life applications. Therefore, search for better parent TE compounds is deemed urgent. Using a high-throughput search method based on first-principles calculations in newly proposed 378 half-Heusler alloys, we identify nine nickel-based half-Heusler semiconductors as candidates and systematically study their mechanical, electronic, and transport properties. Their mechanical and dynamical stabilities are verified based on the calculated elastic constants and phonon spectra. The electronic structure calculations indicate the existence of direct energy gaps in the NiVZ (Z = Al, Ga, and In) and indirect energy gaps in the NiTiZ (Z = Si, Ge, and Sn) and NiScZ (Z = P, As, and Sb) compounds. Among them, NiVAl, NiVGa, and NiVIn exhibit a sharp slope of density of states near the Fermi level, which is predicted to be essential for a high TE performance. Further investigation on carrier concentration and temperature dependence of TE properties shows the high power factors of NiVAl, NiVGa, and NiVIn, which are responsible for their high figure of merit values. The highest maximum power factor of 5.152 mW m-1 K-2 and figure of merit of 0.309 are predicted for pristine half-Heusler NiVIn, which are larger than the values of some known pristine and doped half-Heusler TE materials. Our work opens up new avenues for rationally searching better TE materials among half-Heusler alloys for applications in fields requiring efficient thermoelectricity.

16.
Nat Commun ; 12(1): 230, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431861

RESUMO

Infection of the human stomach by Helicobacter pylori remains a worldwide problem and greatly contributes to peptic ulcer disease and gastric cancer. Without active intervention approximately 50% of the world population will continue to be infected with this gastric pathogen. Current eradication, called triple therapy, entails a proton-pump inhibitor and two broadband antibiotics, however resistance to either clarithromycin or metronidazole is greater than 25% and rising. Therefore, there is an urgent need for a targeted, high-specificity eradication drug. Gastric infection by H. pylori depends on the expression of a nickel-dependent urease in the cytoplasm of the bacteria. Here, we report the 2.0 Å resolution structure of the 1.1 MDa urease in complex with an inhibitor by cryo-electron microscopy and compare it to a ß-mercaptoethanol-inhibited structure at 2.5 Å resolution. The structural information is of sufficient detail to aid in the development of inhibitors with high specificity and affinity.


Assuntos
Microscopia Crioeletrônica , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Helicobacter pylori/enzimologia , Urease/antagonistas & inibidores , Urease/ultraestrutura , Domínio Catalítico , Concentração de Íons de Hidrogênio , Modelos Moleculares
17.
Exp Ther Med ; 20(4): 3161-3173, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32855685

RESUMO

The aim of present study was to evaluate the potential effects of Rhodiola crenulata oral liquid (RCOL) on exhaustive exercise (EE)-induced fatigue in mice. Male Institute of Cancer Research mice from five treatment groups (n=10 per group) were orally administered with sterilized water for the Control and EE groups and/or RCOL at doses of 1.02, 3.03 and 6.06 ml/kg/day, once daily for 2 weeks. Anti-fatigue activity was subsequently evaluated by measuring the levels of creatine kinase (CK), lactic acid (LA), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and total anti-oxidative capability (T-AOC). Histopathology was assessed using hematoxylin and eosin staining. Ultrastructures of mitochondria were observed by transmission electron microscopy. Energy supply capacity was assessed using citrate synthase (CS), succinate dehydrogenase (SDH), Na+-K+-ATPase, and liver and quadriceps glycogen content assays. Expression levels of mRNA and protein associated with mitophagy in the skeletal muscle were measured by reverse transcription-quantitative PCR and western blotting, respectively. RCOL was observed to markedly inhibit fatigue-induced oxidative stress by increasing the activities of SOD, CAT and T-AOC, whilst reducing the accumulation of LA, CK, LDH and MDA. Histological analysis of the quadriceps femoris tissue suggested increased numbers of muscle fibers in the RCOL groups compared with those in the EE group. RCOL administration was found to reverse EE-induced mitochondrial structural damage and alleviated defects inflicted onto the energy supply mechanism by increasing CS, SDH, Na+-K+-ATPase and glycogen levels. Additionally, RCOL reduced the protein expression of PTEN-induced kinase 1 (PINK1), Parkin, microtubule-associated proteins 1A/1B light chain 3, sequestosome 1 and ubiquitin, whilst lowering the gene expression of PINK1 and Parkin. Taken together, results from the present study clarified the anti-fatigue effect of RCOL, where the underlying mechanism may be associated with increased antioxidant activity, enhanced energy production and the inhibition of mitophagy by suppressing the PINK1/Parkin signaling pathway.

18.
Cell Rep ; 32(6): 108016, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32755598

RESUMO

The influenza virus hemagglutinin (HA) and coronavirus spike (S) protein mediate virus entry. HA and S proteins are heavily glycosylated, making them potential targets for carbohydrate binding agents such as lectins. Here, we show that the lectin FRIL, isolated from hyacinth beans (Lablab purpureus), has anti-influenza and anti-SARS-CoV-2 activity. FRIL can neutralize 11 representative human and avian influenza strains at low nanomolar concentrations, and intranasal administration of FRIL is protective against lethal H1N1 infection in mice. FRIL binds preferentially to complex-type N-glycans and neutralizes viruses that possess complex-type N-glycans on their envelopes. As a homotetramer, FRIL is capable of aggregating influenza particles through multivalent binding and trapping influenza virions in cytoplasmic late endosomes, preventing their nuclear entry. Remarkably, FRIL also effectively neutralizes SARS-CoV-2, preventing viral protein production and cytopathic effect in host cells. These findings suggest a potential application of FRIL for the prevention and/or treatment of influenza and COVID-19.


Assuntos
Antivirais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Fabaceae/química , Infecções por Orthomyxoviridae/tratamento farmacológico , Lectinas de Plantas/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Células A549 , Administração Intranasal , Animais , Antivirais/administração & dosagem , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , COVID-19 , Embrião de Galinha , Chlorocebus aethiops , Cães , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Pandemias , Lectinas de Plantas/administração & dosagem , Lectinas de Plantas/farmacologia , Ligação Proteica , SARS-CoV-2 , Células Vero , Proteínas do Envelope Viral/metabolismo
19.
Eur J Clin Nutr ; 74(12): 1677-1684, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32404901

RESUMO

AIM: Age and lower folate concentrations are well-known risk factors for cardiovascular disease (CVD), but the potential roles of age and folate deficiency in hyperhomocysteinemia (HHcy), especially in HHcy patients with abnormal methylation levels of key enzyme genes promoter in homocysteinemia (Hcy) pathway, have not been thoroughly evaluated. The purpose of this study was to evaluate the relationship between the promoter methylation levels of six key enzyme genes and age and serum folate level to better understand the pathogenesis of HHcy. METHODS: In 299 HHcy patients, six key enzyme genes promoter methylation was analyzed by PCR amplification and MethylTargetTM methods. RESULTS: The betaine homocysteine methyltransferase (BHMT), Cystathionine ß-synthase (CBS), and Methionine synthasegene (MTR) promoter methylation levels were positively associated with age and a negative correlation was found between CBS promoter methylation level and folate levels. However, these associations were not significant after Bonferroni correction. The stratified analysis showed that the methylation level of CBS gene promoter was positively correlated with age in males, and a positive correlation was also found between BHMT gene promoter methylation level and age in HHcy patients with a history of diabetes or hypertension. Moreover, stratified analysis according to sex revealed that the methylation levels of three CpG regions of BHMT_2, CBS_2, and CBS_3 were positively correlated with age in males after Bonferroni correction. CONCLUSIONS: Our data suggested that age and folate deficiency may increase the risk of HHcy by mediating methylation of the promoter regions of key enzyme genes in the one-carbon metabolism pathway.


Assuntos
Hiper-Homocisteinemia , Carbono , Ácido Fólico , Homocisteína , Humanos , Hiper-Homocisteinemia/genética , Masculino , Metilação , Regiões Promotoras Genéticas
20.
Ann Transl Med ; 8(5): 174, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32309321

RESUMO

BACKGROUND: This study aimed to investigate whether nerve conduction could be used to objectively evaluate mean effective volume of 1.5% lidocaine after subparaneural or extraparaneural injection. METHODS: Twenty patients undergoing unilateral foot or ankle surgery were randomized into either subparaneural or extraparaneural injection group, and ultrasound-guided continuous popliteal sciatic nerve block was performed. The action potential amplitude of the distal gastrocnemius muscle was monitored. The time of anesthesia onset and dosage of lidocaine were recorded when amplitude declined to 0.5 mV. The operative analgesic effect, score of numeric rating scales, patient's satisfaction, and movement or sensation were recorded during or after surgery. RESULTS: Preoperative dose of local anesthetics (10.7±1.6 vs. 16.2±1.2 mL) and the time of onset (19.4±3.3 vs. 30.4±2.5 min) reduced significantly in the subparaneural group (P<0.05). The intra-operative analgesic effect (1.2±0.422 vs. 1.3±0.483) and the score of resting numeric rating scales (0.6±1.0 vs. 1.9±2.1 and 0.4±0.7 vs. 1.2±1.1) 24 and 48 h after surgery were comparable between groups, but the subparaneural group had markedly lower scores of activity numeric rating scales (0.3±0.6 vs. 2.1±2.0, 0.7±1.2 vs. 2.2±1.9 and 0.5±0.8 vs. 1.5±1.2) at 6, 24 and 48 h, and significantly higher satisfaction (9.7±0.5 vs. 8.8±0.8) (P<0.05). There were no obvious symptoms of movement or sensation within 3 days in two groups. CONCLUSIONS: The nerve conduction can be used to objectively evaluate the mean effective volume of 1.5% lidocaine in different injection groups, and subparaneural injection has more advantages as compared to extraparaneural injection for continuous popliteal sciatic nerve block.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA