Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Theranostics ; 14(10): 3909-3926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994036

RESUMO

Background: Aurora kinase A (AURKA) is a potent oncogene that is often aberrantly expressed during tumorigenesis, and is associated with chemo-resistance in various malignancies. However, the role of AURKA in chemo-resistance remains largely elusive. Methods: The cleavage of AURKA upon viral infection or apoptosis stimuli was assesed by immunoblotting assays in several cancer cells or caspase deficient cell line models. The effect of AURKA cleavage at Asp132 on mitosis was explored by live cell imaging and immunofluorescence staining experiments. The role of Asp132-cleavage of AURKA induced by the chemotherapy drug paclitaxel was investigated using TUNEL, immunohistochemistry assay in mouse tumor xenograft model and patient tissues. Results: The proteolytic cleavage of AURKA at Asp132 commonly occurs in several cancer cell types, regardless of viral infection or apoptosis stimuli. Mechanistically, caspase 3/7/8 cleave AURKA at Asp132, and the Asp132-cleaved forms of AURKA promote cell apoptosis by disrupting centrosome formation and bipolar spindle assembly in metaphase during mitosis. The AURKAD132A mutation blocks the expression of cleaved caspase 3 and EGR1, which leads to reduced therapeutic effects of paclitaxel on colony formation and malignant growth of tumor cells in vitro and in vivo using a murine xenograft model and cancer patients. Conclusions: This study reveals that caspase-mediated AURKAD132 proteolysis is essential for paclitaxel to elicit cell apoptosis and indicates that AURKAD132 is a potential key target for chemotherapy.


Assuntos
Apoptose , Aurora Quinase A , Paclitaxel , Paclitaxel/farmacologia , Aurora Quinase A/metabolismo , Animais , Humanos , Apoptose/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Caspases/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Mitose/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Feminino , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia
2.
Mol Cancer Res ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888574

RESUMO

Metabolic reprogramming of aerobic glycolysis contributes to tumorigenesis. High plasma lactate is a critical regulator in the development of many human malignancies; however, the underlying molecular mechanisms of cancer progression in the response to lactate (LA) remain elusive. Here we show that reduction of Yin-Yang 1 (YY1) expression correlated with high LA commonly occurs in various cancer cell types, including B-lymphoma and cervical cancer. Mechanistically, LA induces YY1 nuclear export and degradation via HSP70-mediated autophagy adjacent to mitochondria in a Histidine-rich LAR (LA-responsive) motif-dependent manner. Mutation of the LAR motif blocks LA-mediated YY1 cytoplasmic accumulation and in turn enhances cell apoptosis. Furthermore, low expression of YY1 promotes the colony formation, invasion, angiogenesis and growth of cancer cells in response to LA in vitro and in vivo using a murine xenograft model. Taken together, our findings reveal that a key lactate-responsive` element and may serve as therapeutic target for intervening cancer progression. Implications: We have shown lactate can induce YY1 degradation via its Histidine-rich LAR motif, and low expression of YY1 promotes cancer cell progression in response to lactate, leading to better prediction of YY1-targeting therapy.

3.
BMC Genomics ; 25(1): 273, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475709

RESUMO

BACKGROUND: There are two major genetic types of Epstein-Barr Virus (EBV): type 1 (EBV-1) and type 2 (EBV-2). EBV functions by manipulating gene expression in host B cells, using virus-encoded gene regulatory proteins including Epstein-Barr Nuclear Antigen 2 (EBNA2). While type 1 EBNA2 is known to interact with human transcription factors (hTFs) such as RBPJ, EBF1, and SPI1 (PU.1), type 2 EBNA2 shares only ~ 50% amino acid identity with type 1 and thus may have distinct binding partners, human genome binding locations, and functions. RESULTS: In this study, we examined genome-wide EBNA2 binding in EBV-1 and EBV-2 transformed human B cells to identify shared and unique EBNA2 interactions with the human genome, revealing thousands of type-specific EBNA2 ChIP-seq peaks. Computational predictions based on hTF motifs and subsequent ChIP-seq experiments revealed that both type 1 and 2 EBNA2 co-occupy the genome with SPI1 and AP-1 (BATF and JUNB) hTFs. However, type 1 EBNA2 showed preferential co-occupancy with EBF1, and type 2 EBNA2 preferred RBPJ. These differences in hTF co-occupancy revealed possible mechanisms underlying type-specific gene expression of known EBNA2 human target genes: MYC (shared), CXCR7 (type 1 specific), and CD21 (type 2 specific). Both type 1 and 2 EBNA2 binding events were enriched at systemic lupus erythematosus (SLE) and multiple sclerosis (MS) risk loci, while primary biliary cholangitis (PBC) risk loci were specifically enriched for type 2 peaks. CONCLUSIONS: This study reveals extensive type-specific EBNA2 interactions with the human genome, possible differences in EBNA2 interaction partners, and a possible new role for type 2 EBNA2 in autoimmune disorders. Our results highlight the importance of considering EBV type in the control of human gene expression and disease-related investigations.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Genoma Humano , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Proteínas Virais/genética , Fatores de Transcrição/metabolismo
4.
Heliyon ; 10(3): e25266, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38352733

RESUMO

Background: Laryngeal squamous cell carcinoma (LSCC) is the ultimate common malignant head and neck cancer with dismal prognosis. The expression pattern and clinical significance of Siglec-15 (Sialic acid-binding immunoglobulin-like lectin 15) in LSCC are poorly understood. In order to lay the groundwork for future immune-related research on Siglec-15 in LSCC, we set out to study its expression and prognostic importance in the disease, as well as to use bioinformatics to investigate the immune features modulated by Siglec-15 in LSCC. Methods: ① In order to get the gene expression profile and clinical data for TCGA head and neck cancer (TCGA-HNSC), you may access the relevant data from UCSC xena and use 110 cases of laryngeal cancer as a training set. Two datasets, GSE27020 and GSE25727, were obtained from the GEO databank and utilized as validation sets. These datasets include expression profiles and clinical information. The Siglec-15 gene and immune characteristics were analyzed by bioinformatics methods. ② Retrospectively collected routine paraffin specimens from patients with pathological diagnosis of squamous cell carcinoma from December 2012 to November 2015 in Sun Yat-sen Memorial Hospital and fresh frozen tissue of patients from June 2021 to March 2022. Immunohistochemistry method, immunofluorescence technique and real-time quantitative PCR was used to examine the difference of Siglec-15 appearance in LSCC tissue and adjacent tissue, and its correlation of prognosis, clinic pathological characteristics and CD8+T lymphocyte infiltration. Using human laryngeal cancer cell line (LCC), we studied the influence of Siglec-15 in cell proliferation and invasion. Results: We identified Siglec-15 was upregulated in LSCC. The patients in Siglec-15 high expression group had a poor overall survival (OS) based on the clinical information from TGCA and 111 LSCC patients that hospitalized in Sun Yat-sen Memorial Hospital. The COX regression analysis indicated Siglec-15 as an independent predictor for poor prognosis of LSCC. Bioinformatic analysis suggested that the high expression of Siglec-15 shape an immune suppressive tumor microenvironment (TEM), leading to poor response to immunotherapy in LSCC. Siglec-15 enhanced cell invasion and proliferation, as we showed in vitro. Conclusion: Our study support Siglec-15 as a potential predictor for LSCC prognosis and an attractive target for LSCC immunotherapy.

5.
Mar Drugs ; 22(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38393061

RESUMO

Protein hydrolysates from sea cucumber (Apostichopus japonicus) gonads are rich in active materials with remarkable angiotensin-converting enzyme (ACE) inhibitory activity. Alcalase was used to hydrolyze sea cucumber gonads, and the hydrolysate was separated by the ultrafiltration membrane to produce a low-molecular-weight peptide component (less than 3 kDa) with good ACE inhibitory activity. The peptide component (less than 3 kDa) was isolated and purified using a combination method of ACE gel affinity chromatography and reverse high-performance liquid chromatography. The purified fractions were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the resulting products were filtered using structure-based virtual screening (SBVS) to obtain 20 peptides. Of those, three noncompetitive inhibitory peptides (DDQIHIF with an IC50 value of 333.5 µmol·L-1, HDWWKER with an IC50 value of 583.6 µmol·L-1, and THDWWKER with an IC50 value of 1291.8 µmol·L-1) were further investigated based on their favorable pharmacochemical properties and ACE inhibitory activity. Molecular docking studies indicated that the three peptides were entirely enclosed within the ACE protein cavity, improving the overall stability of the complex through interaction forces with the ACE active site. The total free binding energies (ΔGtotal) for DDQIHIF, HDWWKER, and THDWWKER were -21.9 Kcal·mol-1, -71.6 Kcal·mol-1, and -69.1 Kcal·mol-1, respectively. Furthermore, a short-term assay of antihypertensive activity in spontaneously hypertensive rats (SHRs) revealed that HDWWKER could significantly decrease the systolic blood pressure (SBP) of SHRs after intravenous administration. The results showed that based on the better antihypertensive activity of the peptide in SHRs, the feasibility of targeted affinity purification and computer-aided drug discovery (CADD) for the efficient screening and preparation of ACE inhibitory peptide was verified, which provided a new idea of modern drug development method for clinical use.


Assuntos
Anti-Hipertensivos , Pepinos-do-Mar , Ratos , Animais , Anti-Hipertensivos/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Cromatografia Líquida , Simulação de Acoplamento Molecular , Pepinos-do-Mar/metabolismo , Espectrometria de Massas em Tandem , Peptídeos/química , Ratos Endogâmicos SHR , Cromatografia de Afinidade , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Gônadas/metabolismo , Angiotensinas
6.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370617

RESUMO

The role of splicing dysregulation in cancer is underscored by splicing factor mutations; however, its impact in the absence of such rare mutations is poorly understood. To reveal complex patient subtypes and putative regulators of pathogenic splicing in Acute Myeloid Leukemia (AML), we developed a new approach called OncoSplice. Among diverse new subtypes, OncoSplice identified a biphasic poor prognosis signature that partially phenocopies U2AF1-mutant splicing, impacting thousands of genes in over 40% of adult and pediatric AML cases. U2AF1-like splicing co-opted a healthy circadian splicing program, was stable over time and induced a leukemia stem cell (LSC) program. Pharmacological inhibition of the implicated U2AF1-like splicing regulator, PRMT5, rescued leukemia mis-splicing and inhibited leukemic cell growth. Genetic deletion of IRAK4, a common target of U2AF1-like and PRMT5 treated cells, blocked leukemia development in xenograft models and induced differentiation. These analyses reveal a new prognostic alternative-splicing mechanism in malignancy, independent of splicing-factor mutations.

7.
bioRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405748

RESUMO

Inflammatory Bowel Disease ( IBD ) is a chronic and often debilitating autoinflammatory condition, with an increasing incidence in children. Standard-of-care therapies lead to sustained transmural healing and clinical remission in fewer than one-third of patients. For children, TNFα inhibition remains the only FDA-approved biologic therapy, providing an even greater urgency to understanding mechanisms of response. Genome-wide association studies ( GWAS ) have identified 418 independent genetic risk loci contributing to IBD, yet the majority are noncoding and their mechanisms of action are difficult to decipher. If causal, they likely alter transcription factor ( TF ) binding and downstream gene expression in particular cell types and contexts. To bridge this knowledge gap, we built a novel resource: multiome-seq (tandem single-nuclei ( sn )RNA-seq and chromatin accessibility ( snATAC )-seq) of intestinal tissue from pediatric IBD patients, where anti-TNF response was defined by endoscopic healing. From the snATAC-seq data, we generated a first-time atlas of chromatin accessibility (putative regulatory elements) for diverse intestinal cell types in the context of IBD. For cell types/contexts mediating genetic risk, we reasoned that accessible chromatin will co-localize with genetic disease risk loci. We systematically tested for significant co-localization of our chromatin accessibility maps and risk variants for 758 GWAS traits. Globally, genetic risk variants for IBD, autoimmune and inflammatory diseases are enriched in accessible chromatin of immune populations, while other traits (e.g., colorectal cancer, metabolic) are enriched in epithelial and stromal populations. This resource opens new avenues to uncover the complex molecular and cellular mechanisms mediating genetic disease risk.

8.
BMC Pulm Med ; 24(1): 20, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191360

RESUMO

BACKGROUND: Serum tumor markers (STM), extensively used for the diagnosis, monitoring and prognostic assessment of tumors, can be increased in some non-malignant lung diseases. To date, there is a paucity of studies regarding the clinical characteristics of non-cystic fibrosis bronchiectasis patients with positive STMs. OBJECTIVE: To investigate the clinical characteristics and indicators of bronchiectasis with positive STMs. METHODS: The clinical data of 377 bronchiectasis patients was retrospectively collected from January 2017 to December 2019 from Beijing Chaoyang Hospital. Patients were divided into the STM negative group, the single STM positive group and the ≥2 STMs positive group according to the number of the positive STMs. The clinical characteristics are described and compared separately. The multivariate logistic regression analysis model was used to investigate the indicators regarding positive STMs. RESULTS: Patients in the ≥2 STMs positive group were older (P = 0.015), had higher mMRC scores (P < 0.001) and developed higher fever (P = 0.027). Additionally, these patients also had lower Albumin/Globulin Ratio (A/G), albumin (ALB), prealbumin (PAB) (P < 0.001, P < 0.001, P < 0.001, respectively) and higher CRP, ESR and Fbg (P < 0.001, P < 0.001 and P < 0.001, respectively). Age (OR 1.022, 95%CI 1.003-1.042; P = 0.026) and the number of affected lobes (OR 1.443, 95%CI 1.233-1.690; P < 0.001) were independently associated with one and ≥ 2 positive STMs in bronchiectasis patients. CONCLUSION: The ≥2 positive STMs are associated with a higher inflammation status and severer radiologic manifestations in bronchiectasis patients.


Assuntos
Bronquiectasia , Neoplasias , Humanos , Biomarcadores Tumorais , Estudos Retrospectivos , Albuminas , Bronquiectasia/complicações
9.
Macromol Rapid Commun ; 45(5): e2300559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38014713

RESUMO

Alveolar bone injury under diabetic conditions can severely impede many oral disease treatments. Rebuilding diabetic alveolar bone in clinics is currently challenging due to persistent infection and inflammatory response. Here, an antibacterial DNA-based hydrogel named Agantigel is developed by integrating silver nanoclusters (AgNCs) and tumor necrosis factor-alpha (TNF-α) antibody into DNA hydrogel to promote diabetic alveolar bone regeneration. Agantigel can effectively inhibit bacterial growth through AgNCs while exhibiting negligible cytotoxicity in vitro. The sustained release of TNF-α antibody from Agantigel effectively blocks TNF-α and promotes M2 polarization of macrophages, ultimately accelerating diabetic alveolar bone regeneration in vivo. After 21 days of treatment, Agantigel significantly accelerates the defect healing rate of diabetic alveolar bone up to 82.58 ± 8.58% and improves trabecular architectures compared to free TNF-α (42.52 ± 15.85%). The results imply that DNA hydrogels are potential bio-scaffolds helping the sustained release of multidrug for treating DABI or other oral diseases.


Assuntos
Diabetes Mellitus , Hidrogéis , Humanos , Hidrogéis/farmacologia , Fator de Necrose Tumoral alfa , Preparações de Ação Retardada , Antibacterianos/farmacologia , DNA
10.
Adv Healthc Mater ; 13(6): e2302787, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37988243

RESUMO

Esophageal cancer (EC) treatment via anti-angiogenic therapy faces challenges due to non-cytotoxicity and non-specific biodistribution of the anti-angiogenic agents. Hence, the quest for a synergistic treatment modality and a targeted delivery approach to effectively address EC has become imperative. In this study, an acid-responsive release nanosystem (Bev-IR820@FeIII TA) that involves the conjugation of bevacizumab, an anti-angiogenic monoclonal antibody, with TA and Fe3+ to form a metal-phenolic network, followed by loading with the near-infrared photothermal agent (IR820) to achieve combinational therapy, is designed. The construction of Bev-IR820@FeIII TA can be realized through a facile self-assembly process. The Bev-IR820@FeIII TA exhibits tumor-targeting capabilities and synergistic therapeutic effects, encompassing anti-angiogenic therapy, photothermal therapy (PTT), and ferroptosis therapy (FT). Bev-IR820@FeIII TA exhibits remarkable proficiency in delivering drugs to EC tissue through its pH-responsive release properties. Consequently, bevacizumab exerts its therapeutic effects by obstructing tumor angiogenesis, thereby impeding tumor growth. Meanwhile, PTT facilitates localized thermal ablation at the tumor site, directly eradicating EC cells. FT synergistically collaborates with PTT, giving rise to the formation of a reactive oxygen species (ROS) storm, subsequently culminating in the demise of EC cells. In summary, this amalgamated treatment modality carries substantial promise for synergistically impeding EC progression and showcases auspicious prospects for future EC treatment.


Assuntos
Neoplasias Esofágicas , Ferroptose , Humanos , Terapia Fototérmica , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Compostos Férricos , Distribuição Tecidual , Neoplasias Esofágicas/tratamento farmacológico
11.
Acta Biomater ; 175: 329-340, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38135204

RESUMO

Rational design of polymeric conjugates could greatly potentiate the combination therapy of solid tumors. In this study, we designed and prepared two polymeric conjugates (HT-DTX and PEG-YC-1), whereas the drugs were attached to the PEG via a linker sensitive to cathepsin B, over-expressed in TNBC. Stable nanostructures were formed by these two polymer prodrug conjugates co-assembly (PPCC). The stimuli-responsiveness of PPCC was confirmed, and the size shrinkage under tumor microenvironment would facilitate the penetration of PPCC into tumor tissue. In vitro experiments revealed the molecular mechanism for the synergistic effect of the combination of DTX and YC-1. Moreover, the systemic side effects were significantly diminished since the biodistribution of PPCC was improved after i.v. administration in vivo. In this context, the co-assembled nano-structural approach could be employed for delivering therapeutic drugs with different mechanisms of action to exert a synergistic anti-tumor effect against solid tumors, including triple-negative breast cancer. STATEMENT OF SIGNIFICANCE.


Assuntos
Antineoplásicos , Pró-Fármacos , Neoplasias de Mama Triplo Negativas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Terapia Neoadjuvante , Distribuição Tecidual , Polímeros/química , Pró-Fármacos/química , Linhagem Celular Tumoral , Microambiente Tumoral
12.
Theranostics ; 13(15): 5418-5434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908726

RESUMO

Background and Aims: Liver fibrosis is the common pathological pathway of chronic liver diseases and its mechanisms of which have not been fully declared. Macrophages play essential roles in progression of liver fibrosis partially by sensing abnormal mechanical signals. The aim of the study is to investigate the functions of macrophage Piezo1, a mechano-sensitive ion channel, in liver fibrosis. Approach and Results: Immunofluorescence in human and murine fibrotic liver samples revealed that expression of macrophage Piezo1 was increased. Myeloid-specific Piezo1 knockout (Piezo1ΔLysM) attenuated liver fibrosis by decreased collagen deposition and epithelial-mesenchymal transition (EMT). In Piezo1ΔLysM mice, less inflammation during development of liver fibrosis was observed by lessened macrophage infiltration, decreased M1 polarization and expression of inflammatory cytokines. RNA-seq data showed macrophage Piezo1 regulated transcription of cathepsin S (CTSS). Piezo1ΔLysM inhibited expression and activity of CTSS in vitro and in vivo and regulated T cell activity. Furthermore, inhibition of CTSS reversed macrophage inflammatory response driven by Piezo1 activation and LPS. Macrophage Piezo1 activation promoted CTSS secretion due to increased activity of Ca2+-dependent calpain protease induced by Ca2+ influx to cleave lysosome-associated membrane protein-1 (LAMP1). Pharmacological inhibition of calpain activity partially blocked Piezo1 mediated CTSS secretion. Conclusions: Macrophage Piezo1 deficiency limits the progression of liver fibrosis by inhibited inflammatory response and decreased secretion of CTSS. These findings suggest that targeting Piezo1 channel may be a potential strategy for treating hepatic fibrosis.


Assuntos
Calpaína , Cirrose Hepática , Animais , Humanos , Camundongos , Calpaína/metabolismo , Citocinas/metabolismo , Fibrose , Canais Iônicos/genética , Canais Iônicos/metabolismo , Cirrose Hepática/metabolismo , Macrófagos/metabolismo
13.
Cell Genom ; 3(11): 100420, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38020975

RESUMO

TRAF1/C5 was among the first loci shown to confer risk for inflammatory arthritis in the absence of an associated coding variant, but its genetic mechanism remains undefined. Using Immunochip data from 3,939 patients with juvenile idiopathic arthritis (JIA) and 14,412 control individuals, we identified 132 plausible common non-coding variants, reduced serially by single-nucleotide polymorphism sequencing (SNP-seq), electrophoretic mobility shift, and luciferase studies to the single variant rs7034653 in the third intron of TRAF1. Genetically manipulated experimental cells and primary monocytes from genotyped donors establish that the risk G allele reduces binding of Fos-related antigen 2 (FRA2), encoded by FOSL2, resulting in reduced TRAF1 expression and enhanced tumor necrosis factor (TNF) production. Conditioning on this JIA variant eliminated attributable risk for rheumatoid arthritis, implicating a mechanism shared across the arthritis spectrum. These findings reveal that rs7034653, FRA2, and TRAF1 mediate a pathway through which a non-coding functional variant drives risk of inflammatory arthritis in children and adults.

14.
Mar Drugs ; 21(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37888457

RESUMO

An affinity chromatography filler of CNBr-activated Sepharose 4B-immobilized ACE was used to purify ACE-inhibitory peptides from Takifugu flavidus protein hydrolysate (<1 kDa). Twenty-four peptides with an average local confidence score (ALC) ≥ 80% from bounded components (eluted by 1 M NaCl) were identified by LC-MS/MS. Among them, a novel peptide, TLRFALHGME, with ACE-inhibitory activity (IC50 = 93.5 µmol·L-1) was selected. Molecular docking revealed that TLRFALHGME may interact with the active site of ACE through H-bond, hydrophobic, and electrostatic interactions. The total binding energy (ΔGbinding) of TLRFALHGME was estimated to be -82.7382 kJ·mol-1 by MD simulations, indicating the favorable binding of peptides with ACE. Furthermore, the binding affinity of TLRFALHGME to ACE was determined by surface plasmon resonance (SPR) with a Kd of 80.9 µmol, indicating that there was a direct molecular interaction between them. TLRFALHGME has great potential for the treatment of hypertension.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Takifugu , Animais , Inibidores da Enzima Conversora de Angiotensina/química , Takifugu/metabolismo , Cromatografia Líquida , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Peptídeos/farmacologia , Cromatografia de Afinidade/métodos , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Angiotensinas
15.
Healthcare (Basel) ; 11(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37761666

RESUMO

Nasopharyngeal carcinoma is a common and highly malignant cancer in southern China. It is important to accurately assess the illness perception of nasopharyngeal carcinoma according to the common-sense model of self-regulation. The purpose was to validate the Chinese version of the Revised Illness Perception Questionnaire for patients with Nasopharyngeal carcinoma. A cross-sectional survey of 631 patients with Nasopharyngeal carcinoma was conducted in Guangzhou, China. The reliability of the scale was evaluated using Cronbach's alpha. The factor structure was assessed using exploratory factor analysis (EFA) of each dimension. The EFA revealed that the 29-item self-rated scale has a seven-factor structure consistent with the original scale and explained 67.3% of the variance after extraction and rotation. The scale showed satisfactory reliability. The item-total correlations ranged from -0.16 to 0.64 (p < 0.05). The item-subscale correlations ranged from 0.46 to 0.91 (p < 0.05). The item-other subscale correlations ranged from -0.38 to 0.51 and from -0.21 to 0.56 (p < 0.05). Significant correlations were found between the timeline (acute/chronic) (r = 0.224, r = 0.166), consequences (r = 0.415, r = 0.338), timeline cyclical (r = 0.366, r = 0.284), emotional representations (r = 0.497, r = 0.465), personal control (r = -0.122, r = -0.134), treatment control (r = -0.135, r = -0.148), and illness coherence (r = -0.261, r = -0.213) subscales, and depression, anxiety (p < 0.05). The scale revealed acceptable reliability, factorial validity, and construct validity. It could be used to assess the illness representations of Chinese patients with nasopharyngeal carcinoma.

16.
Theranostics ; 13(7): 2368-2383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153736

RESUMO

Background: Lactate is associated with the poor prognosis of many human malignancies. Cervical cancer, one of main causes of women mortality worldwide, is aggressive and absent of effective pharmacological treatment, and its underlying mechanisms of progression remain elusive. Methods: The regulation of ß-catenin to fascin protrusion formation upon acidic lactate (Lactic acid [LA]) stimulation was evaluated through in ß-catenin or fascin deficiency cell line models by immunofluorescence assays, and subcellular fractionation. The effect of ß-catenin and fascin relocation by LA and its antagonist were evaluated by immunohistochemistry assay in patient tissues and mouse tumor xenograft model. Trypsin digestion, Transwell assay, cell proliferation in vitro was performed to explore the role of LA in the cell growth, adhesion and migration. Results: Low concentration of LA significantly promotes cytoskeleton remodeling via `protrusion formation to increase cell adhesion and migration. Mechanistically, upon LA stimulation, ß-catenin diffuses from the cytoplasmic membrane into the nucleus, which in turn induces fascin nuclear-cytoplasm redistribution to the protrusion compartment. Moreover, the antagonist of LA sufficiently blocks the LA-mediated ß-catenin nuclear import, fascin nuclear export, and the growth and invasion of cervical cancer cells in vitro and in vivo using a murine xenograft model. Conclusions: This study uncovers ß-catenin-fascin axis as a key signal in response to extracellular lactate and indicates that antagonist of LA may serve as a potential clinical intervention for cancer development.


Assuntos
Neoplasias do Colo do Útero , beta Catenina , Humanos , Feminino , Camundongos , Animais , beta Catenina/metabolismo , Adesão Celular , Movimento Celular , Ácido Láctico/farmacologia , Linhagem Celular Tumoral , Proliferação de Células
17.
Phytomedicine ; 114: 154783, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004399

RESUMO

BACKGROUND: The clinical effect of Yupingfeng (YPF) has been confirmed in asthma patients, however, it lacks a study to verify its pharmacological mechanism. HYPOTHESIS/PURPOSE: To reveal the molecular basis and potential pharmacological mechanism of YPF in the treatment of asthma. STUDY DESIGN AND METHODS: First, a systems pharmacology-based method integrating pharmacokinetic screening, target prediction, network analyses, GO and KEGG analyses were used for the systematic deciphering of the mechanism of YPF in asthma. Second, differentially expressed genes (DEGs) between asthma patients and healthy controls were identified by GEO2R online tool. Third, based on systems pharmacology and DEGs results, molecular docking was performed utilizing the Discovery Studio 2020 Client version to detect the binding capacity between compounds and targets. Finally, ovalbumin (OVA)-challenged C57BL/6 mice were treated with YPF or its effective compound to assess the predictions. RESULTS: A total of 35 active compounds were filtered out, with 87 potential targets being identified for further analysis after target fishing and matching. Quercetin, kaempferol, and wogonin were identified as the main ingredients in YPF. The signaling pathways of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), tumor necrosis factor (TNF) and IL-17 were identified as the top signaling pathways in KEGG enrichment analysis. GEO2R tools of NCBI discovered five DEGs that overlapped with the therapeutic targets of YPF. Wogonin was proven to be the top active compound in YPF through the results of molecular docking. In vivo experiments indicated that YPF and wogonin significantly attenuated airway resistance and lung inflammation by decreasing the levels of inflammatory cytokines and key factors in PI3K/AKT, IL-17, and TNF signaling pathways. CONCLUSIONS: YPF and its main active compound wogonin may exert some therapeutic effects on asthma inflammation through multiple molecular targets and signaling pathways including PI3K/AKT, IL-17 and TNF-α.


Assuntos
Asma , Medicamentos de Ervas Chinesas , Camundongos , Animais , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt , Interleucina-17 , Farmacologia em Rede , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Fator de Necrose Tumoral alfa
18.
Adv Mater ; 35(23): e2300548, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36917817

RESUMO

Targeting metabolic vulnerability of tumor cells is a promising anticancer strategy. However, the therapeutic efficacy of existing metabolism-regulating agents is often compromised due to tolerance resulting from tumor metabolic plasticity, as well as their poor bioavailability and tumor-targetability. Inspired by the inhibitive effect of N-ethylmaleimide on the mitochondrial function, a dendronized-polymer-functionalized metal-phenolic nanomedicine (pOEG-b-D-SH@NP) encapsulating maleimide-modified doxorubicin (Mal-DOX) is developed to enable improvement in the overall delivery efficiency and inhibition of the tumor metabolism via multiple pathways. It is observed that Mal-DOX and its derived nanomedicine induces energy depletion of CT26 colorectal cancer cells more efficiently than doxorubicin, and shifts the balance of programmed cell death from apoptosis toward necroptosis. Notably, pOEG-b-D-SH@NP simultaneously inhibits cellular oxidative phosphorylation and glycolysis, thus potently suppressing cancer growth and peritoneal intestinal metastasis in mouse models. Overall, the study provides a promising dendronized-polymer-derived nanoplatform for the treatment of cancers through impairing metabolic plasticity.


Assuntos
Neoplasias Colorretais , Nanopartículas , Animais , Camundongos , Nanomedicina , Portadores de Fármacos/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Polímeros , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral
19.
J Control Release ; 356: 525-541, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36918084

RESUMO

Interaction between carcinoma-associated fibroblasts (CAFs) and tumor cells leads to the invasion and metastasis of breast cancer. Herein, we prepared a redox-responsive chondroitin sulfate (CS)-based nanomedicine, in which hydrophobic cabazitaxel (CTX) was conjugated to the backbone of CS via glutathione (GSH)-sensitive dithiomaleimide (DTM) to form an amphipathic CS-DTM-CTX (CDC) conjugate, and dasatinib (DAS) co-assembled with the CDC conjugate to obtain DAS@CDC. After CD44 receptor-mediated internalization by CAFs, the nanomedicine could reverse CAFs to normal fibroblasts, blocking their crosstalk with tumor cells and reducing synthesis of major tumor extracellular matrix proteins, including collagen and fibronectin. Meanwhile, the nanomedicine internalized by tumor cells could effectively inhibit tumor proliferation and metastasis, leading to shrinkage of the tumor volume and inhibition of lung metastasis in a subcutaneous 4T1 tumor model with low side effects. Collectively, the nanomedicine showed a remarkably synergistic therapy effect against breast cancer by modulating tumor-stromal crosstalk.


Assuntos
Neoplasias da Mama , Nanomedicina , Humanos , Feminino , Linhagem Celular Tumoral , Neoplasias da Mama/patologia , Fibroblastos/metabolismo , Oxirredução , Microambiente Tumoral
20.
Clin Respir J ; 17(4): 311-319, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36772864

RESUMO

INTRODUCTION: Patient gender has clinical and prognostic implications in non-cystic fibrosis bronchiectasis, yet the potential effect of gender on clinical characteristics of patients with non-cystic fibrosis bronchiectasis is still unclear. OBJECTIVES: This study aimed to investigate the gender differences in clinical characteristics of patients with bronchiectasis in different age groups in northern China. METHODS: A total of 777 patients diagnosed with bronchiectasis were retrospectively included in Beijing Chaoyang Hospital and divided into two groups by gender: the male group and the female group. Each group was then subdivided into two according to their age (≤65 and >65 years). Gender differences in clinical characteristics were compared in all patients with bronchiectasis in the two age groups, respectively. RESULTS: A total of 777 bronchiectasis patients were included. Of these patients, the prevalence of female non-smokers was substantially higher than that of male non-smokers (94.0% vs. 36.8%). There were gender differences in etiology of bronchiectasis, with more post-measles and connective tissue disease in females (p = 0.006 and 0.002 separately) and more chronic obstructive pulmonary disease (COPD) in males (p < 0.001). The male group had a significantly higher C-reactive protein (CRP) on admission (p = 0.03). Female patients showed a higher forced expiratory volume in 1 s as percentage of predicted volume (FEV1%pred) and forced vital capacity rate of 1 s (FEV1/FVC) (p < 0.001), lower partial pressure of carbon dioxide (PaCO2 ) (p = 0.04) and hospital costs (p = 0.02) than males, and a higher prevalence of infection with Pseudomonas aeruginosa in >65-year-old group (p = 0.019). CONCLUSIONS: There were many differences between male and female patients in smoking status, etiology, lung function, blood gas analysis, and hospital costs in all patients or different age groups.


Assuntos
Bronquiectasia , Doença Pulmonar Obstrutiva Crônica , Humanos , Masculino , Feminino , Idoso , Fatores Sexuais , Estudos Retrospectivos , Bronquiectasia/epidemiologia , Volume Expiratório Forçado , Fibrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA