Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int J Oral Sci ; 16(1): 44, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886346

RESUMO

Metabolic heterogeneity plays a central role in sustaining uncontrolled cancer cell proliferation and shaping the tumor microenvironment (TME), which significantly compromises the clinical outcomes and responses to therapy in head and neck squamous cell carcinoma (HNSCC) patients. This highlights the urgent need to delineate the intrinsic heterogeneity and biological roles of metabolic vulnerabilities to advance precision oncology. The metabolic heterogeneity of malignant cells was identified using single-cell RNA sequencing (scRNA-seq) profiles and validated through bulk transcriptomes. Serine-glycine-one-carbon (SGOC) metabolism was screened out to be responsible for the aggressive malignant properties and poor prognosis in HNSCC patients. A 4-SGOC gene prognostic signature, constructed by LASSO-COX regression analysis, demonstrated good predictive performance for overall survival and therapeutic responses. Patients in the low-risk group exhibited greater infiltration of exhausted CD8+ T cells, and demonstrated better clinical outcomes after receiving immunotherapy and chemotherapy. Conversely, high-risk patients exhibited characteristics of cold tumors, with enhanced IMPDH1-mediated purine biosynthesis, resulting in poor responses to current therapies. IMPDH1 emerged as a potential therapeutic metabolic target. Treatment with IMPDH inhibitors effectively suppressed HNSCC cell proliferation and metastasis and induced apoptosis in vitro and in vivo by triggering GTP-exhaustion nucleolar stress. Our findings underscore the metabolic vulnerabilities of HNSCC in facilitating accurate patient stratification and individualized precise metabolic-targeted treatment.


Assuntos
Neoplasias de Cabeça e Pescoço , Serina , Análise de Célula Única , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Prognóstico , Serina/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/terapia , Glicina/metabolismo , Carbono/metabolismo , Transcriptoma , Microambiente Tumoral , Proliferação de Células , Linhagem Celular Tumoral , Animais
2.
J Hazard Mater ; 472: 134539, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38718516

RESUMO

This study presents a comprehensive approach to estimating annual atrazine residues in China's agricultural soils, integrating machine learning algorithms and mechanism-based models. First, machine learning was used to predict essential parameters influencing atrazine's adsorption, degradation, and dispersivity of solute transport. The results demonstrated that soil organic matter was the most important input variable for predicting adsorption and degradation; clay content was the primary variable for predicting dispersivity. The SHapley Additive exPlanations (SHAP) contribution of various soil properties on target variables were also analyzed to reveal whether each input variable has a positive, negative, or complex effect. Subsequently, these parameters inform the construction of a detailed model across 23,692 subregions of China, with a 20 km × 20 km resolution. The model considered regional variations and soil layer heterogeneity, including rainfall, soil depth-specific properties, and parameters for adsorption, degradation, and dispersivity. Utilizing the convection-dispersion equations and the Phydrus, the model simulated atrazine's transport and degradation patterns across diverse soil environments after applying 250 mL of atrazine (40%) per Chinese mu. The outcomes provided a spatially explicit distribution of atrazine residues, specifying that the arid areas have the highest residual risk, followed by the Northeast, Southwest, and Southeast. Atrazine levels may exceed national drinking water standards at 50 cm depth in Inner Mongolia, the Qinghai-Tibet Plateau, and the Jungar Basin. This study's integrative approach may also offer valuable insights and tools for evaluating residues of various pesticides and herbicides in agricultural soils.

3.
J Oral Pathol Med ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802300

RESUMO

BACKGROUND: Radiotherapy (RT) can drive cancer cells to enter a state of cellular senescence in which cells can secrete senescence-associated secretory phenotype (SASP) and produce small extracellular vesicles (sEVs) to interact with cells in the tumor microenvironment (TME). Tumor-derived sEVs that are taken up by recipient cells contribute to cancer cell metabolic plasticity, resistance to anticancer therapy, and adaptation to the TME. However, how radiation-induced sEVs support oral squamous cell carcinoma (OSCC) progression remains unclear. METHODS: Beta-galactosidase staining and SASP mRNA expression analysis were used to evaluate the senescence-associated activity of OSCC cells after irradiation. Nanoparticle tracking analysis was performed to identify radiation-induced sEVs. Liquid chromatography-tandem mass spectrometry (LC-MS) was used to explore changes in the levels of proteins in radiation-induced sEVs. Cell Counting Kit-8 and colony formation assays were performed to investigate the function of radiation-induced SASP and sEVs in vitro. A xenograft tumor model was established to investigate the functions of radiation-induced sEVs and V-9302 in vivo as well as the underlying mechanisms. Bioinformatics analysis was performed to determine the relationship between glutamine metabolism and OSCC recurrence. RESULTS: We determined that the radiation-induced SASP triggered OSCC cell proliferation. Additionally, radiation-induced sEVs exacerbated OSCC cell malignancy. LC-MS/MS and bioinformatics analyses revealed that SLC1A5, which is a cellular receptor that participates in glutamine uptake, was significantly enriched in radiation-induced sEVs. In vitro and in vivo, inhibiting SLC1A5 could block the oncogenic effects of radiation-induced sEVs in OSCC. CONCLUSION: Radiation-induced sEVs might promote the proliferation of unirradiated cancer cells by enhancing glutamine metabolism; this might be a novel molecular mechanism underlying radiation resistance in OSCC patients.

4.
BMC Cancer ; 24(1): 321, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454345

RESUMO

BACKGROUND: Definitive concurrent chemoradiotherapy (dCCRT) is the gold standard for the treatment of locally advanced esophageal squamous cell carcinoma (ESCC). However, the potential benefits of consolidation chemotherapy after dCCRT in patients with esophageal cancer remain debatable. Prospective randomized controlled trials comparing the outcomes of dCCRT with or without consolidation chemotherapy in patients with ESCC are lacking. In this study, we aim to generate evidence regarding consolidation chemotherapy efficacy in patients with locally advanced, inoperable ESCC. METHODS: This is a multicenter, prospective, open-label, phase-III randomized controlled trial comparing non-inferiority of dCCRT alone to consolidation chemotherapy following dCCRT. In total, 600 patients will be enrolled and randomly assigned in a 1:1 ratio to receive either consolidation chemotherapy after dCCRT (Arm A) or dCCRT alone (Arm B). Overall survival will be the primary endpoint, whereas progression-free survival, locoregional progression-free survival, distant metastasis-free survival, and treatment-related toxicity will be the secondary endpoints. DISCUSSION: This study aid in further understanding the effects of consolidation chemotherapy after dCCRT in patients with locally advanced, inoperable ESCC. TRIAL REGISTRATION: ChiCTR1800017646.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Quimiorradioterapia , Quimioterapia de Consolidação , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/radioterapia , Carcinoma de Células Escamosas do Esôfago/terapia , Carcinoma de Células Escamosas do Esôfago/patologia , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase III como Assunto , Estudos de Equivalência como Asunto
5.
Cell Death Dis ; 14(4): 251, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024453

RESUMO

Mitochondria are essential organelles in balancing oxidative stress and cell death during cancer cell proliferation. Rapid tumor growth induces tremendous stress on mitochondria. The mammalian tumor necrosis factor-α-induced protein 8-likes (TIPEs) family plays critical roles in balancing cancer cell death and survival. Yet, the roles of TIPEs in HNSCC tumorigenesis and mitochondria stress maintenance is unclear. Based on an integrative analysis of public HNSCC datasets, we identified that the downregulation of TIPE3 via its promoter hypermethylation modification is the major event of TIPEs alterations during HNSCC tumorigenesis. Low expression levels of TIPE3 were correlated with high malignancy and poor clinical outcomes of HNSCC patients. Restoring TIPE3 represses HNSCC proliferation, migration, and invasion in vitro and in vivo, while silencing TIPE3 acted on an opposite way. Mechanistically, TIPE3 band to the PGAM5 and electron transport chain (ETC) complex. Restoring TIPE3 promoted PGAM5 recruiting BAX and dephosphorylating p-DRP1(Ser637), which triggered mitochondrial outer membrane permeabilization and fragmentation. Ultimately, TIPE3 induced ETC damage and oxygen consumption rate decrease, ROS accumulation, mitochondrial membrane potential depolarization, and cell apoptosis. Collectively, our work reveals that TIPE3 plays critical role in maintaining mitochondrial stress and cancer cell progression in HNSCC, which might be a potential therapeutic target for HNSCC patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Mitocôndrias , Animais , Humanos , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Mamíferos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo
6.
Am J Chin Med ; 51(3): 761-777, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36867109

RESUMO

Hypoxia-inducible factor-1 (HIF-1) is an [Formula: see text]/[Formula: see text] heterodimeric transcription factor. In normal mammalian cells, HIF-1[Formula: see text] is hydroxylated and degraded upon biosynthesis. However, HIF-1[Formula: see text] is frequently expressed in cancer and adds to cancer malignancy. In this study, we investigated whether green tea-derived epigallocatechin-3-gallate (EGCG) decreased HIF-1[Formula: see text] in pancreatic cancer cells. After MiaPaCa-2 and PANC-1 pancreatic cancer cells were exposed to EGCG in vitro, we performed a Western blot to determine native and hydroxylated HIF-1[Formula: see text], which was in turn used to assess HIF-1[Formula: see text] production. In order to assess HIF-1[Formula: see text] stability, we determined the HIF-1[Formula: see text] after MiaPaCa-2 and PANC-1 cells were switched from hypoxia to normoxia. We found that EGCG decreased both production and stability of HIF-1[Formula: see text]. Further, the EGCG-induced decrease in HIF-1[Formula: see text] reduced intracellular glucose transporter-1 and glycolytic enzymes and attenuated glycolysis, ATP production, and cell growth. Because EGCG is known to inhibit cancer-induced insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R), we created three MiaPaCa-2 sublines whose IR, IGF1R, and HIF-1[Formula: see text] were decreased using RNA interference. From wild-type MiaPaCa-2 cells and these sublines, we found evidence that suggested that the EGCG-induced inhibition of HIF-1[Formula: see text] was both dependent on and independent of IR and IGF1R. In vivo, we transplanted wild-type MiaPaCa-2 cells in athymic mice and treated the mice with EGCG or vehicle. When the resulting tumors were analyzed, we found that EGCG decreased tumor-induced HIF-1[Formula: see text] and tumor growth. In conclusion, EGCG decreased HIF-1[Formula: see text] in pancreatic cancer cells and sabotaged the cells. The anticancer effects of EGCG were both dependent on and independent of IR and IGF1R.


Assuntos
Fator 1 Induzível por Hipóxia , Neoplasias Pancreáticas , Animais , Camundongos , Fator 1 Induzível por Hipóxia/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Hipóxia , Mamíferos , Neoplasias Pancreáticas
7.
Front Oncol ; 13: 1021262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776328

RESUMO

Backgrounds: Immunotherapy is effective in a subset of head and neck squamous cell carcinoma (HNSCC). However, the unfavorable response rate and inadequate biomarkers for stratifying patients have primarily limited its clinical application. Considering transcriptional factors (TFs) play essential roles in regulating immune activity during HNSCC progression, we comprehensively analyzed the expression alterations of TFs and their prognostic values. Methods: Gene expression datasets and clinical information of HNSCC were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) repository. Then, Brain abundant membrane attached signal protein 1 (BASP1) was screened out of differentially expressed TFs by univariate and multivariate survival analysis. Tumor immune dysfunction and exclusion (TIDE) was applied to analyze the response to immunotherapy of BASP1high/low patients. Meanwhile, GO, KEGG and GSEA analyses were used to enrich the pathways between the BASP1high and BASP1low groups. Single-sample gene set enrichment analysis (ssGSEA), CIBERSORT, EPIC and quanTiseq algorithms were applied to explore immune infiltrations. Also, immune cycle analysis was conducted by ssGSEA. Additionally, lipid peroxidation, glutathione and reactive oxygen species were performed to detect the ferroptosis alternations. Results: BASP1 was upregulated and associated with poor survival in HNSCC patients. BASP1high patients exhibited better response rates to anti-PD-1 immunotherapy and higher expressions of immune checkpoint inhibitors. GO, KEGG and GSEA analyses indicated that the expression of BASP1 was related to several immune-related pathways and immunogenic ferroptosis signature. The infiltration of activated CD8+ T cells was authenticated to be decreased in BASP1high patients. Furthermore, BASP1 was identified to be positively correlated with T cell dysfunction and immune escape. Moreover, silencing BASP1 triggered ferroptosis in HNSCC cells, representing as increased LDH, lipid peroxidation and ROS levels, and reduced glutathione synthesis. Conclusions: We demonstrated that BASP1 suppressed immunogenic ferroptosis to induce immunosuppressive tumor microenvironment. BASP1 plays a critical role in immune response, and might be a promising classifier for selecting HNSCC patients who benefit from current immunotherapy.

8.
Cell Prolif ; 56(7): e13406, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36694343

RESUMO

Collapse of the microvascular system is a prerequisite for radiation-induced bone loss. Since type H vessels, a specific bone vessel subtype surrounded by platelet-derived growth factor receptor ß+ (PDGFRß+ ) perivascular cells (PVCs), has been recently identified to couple angiogenesis and osteogenesis, we hypothesize that type H vessel injury initiates PDGFRß+ PVC dysfunction, which contributes to the abnormal angiogenesis and osteogenesis after irradiation. In this study, we found that radiation led to the decrease of both type H endothelial cell (EC) and PDGFRß+ PVC numbers. Remarkably, results from lineage tracing showed that PDGFRß+ PVCs detached from microvessels and converted the lineage commitment from osteoblasts to adipocytes, leading to vascular injury and bone loss after irradiation. These phenotype transitions above were further verified to be associated with the decrease in hypoxia-inducible factor-1α (HIF-1α)/PDGF-BB/PDGFRß signalling between type H ECs and PDGFRß+ PVCs. Pharmacological blockade of HIF-1α/PDGF-BB/PDGFRß signalling induced a phenotype similar to radiation-induced bone damage, while the rescue of this signalling significantly alleviated radiation-induced bone injury. Our findings show that the decrease in HIF-1α/PDGF-BB/PDGFRß signalling between type H ECs and PDGFRß+ PVCs after irradiation affects the homeostasis of EC-PVC coupling and plays a part in vascular damage and bone loss, which has broad implications for effective translational therapies.


Assuntos
Doenças Ósseas Metabólicas , Lesões do Sistema Vascular , Humanos , Becaplermina , Osso e Ossos/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
9.
Mol Metab ; 65: 101600, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36113774

RESUMO

OBJECTIVE: Oral squamous cell carcinoma (OSCC) is characterized by high recurrence and metastasis and places a heavy burden on societies worldwide. Cancer cells thrive in a changing microenvironment by reprogramming lipidomic metabolic processes to provide nutrients and energy, activate oncogenic signaling pathways, and manage redox homeostasis to avoid lipotoxicity. The mechanism by which OSCC cells maintain lipid homeostasis during malignant progression is unclear. METHODS: The altered expression of fatty acid (FA) metabolism genes in OSCC, compared with that in normal tissues, and in OSCC patients with or without recurrence or metastasis were determined using public data from the TCGA and GEO databases. Immunohistochemistry was performed to examine the carboxylesterase 2 (CES2) protein level in our own cohort. CCK-8 and Transwell assays and an in vivo xenograft model were used to evaluate the biological functions of CES2. Mass spectrometry and RNA sequencing were performed to determine the lipidome and transcriptome alterations induced by CES2. Mitochondrial mass, mtDNA content, mitochondrial membrane potential, ROS levels, and oxygen consumption and apoptosis rates were evaluated to determine the effects of CES2 on mitochondrial function in OSCC. RESULTS: CES2 was downregulated in OSCC patients, especially those with recurrence or metastasis. CES2high OSCC patients showed better overall survival than CES2low OSCC patients. Restoring CES2 expression reduced OSCC cell viability and suppressed their migration and invasion in vitro, and it inhibited OSCC tumor growth in vivo. CES2 reprogrammed lipid metabolism in OSCC cells by hydrolyzing neutral lipid diacylglycerols (DGs) to release free fatty acids and reduce the membrane structure lipid phospholipids (PLs) synthesis. Free FAs were converted to acyl-carnitines (CARs) and transferred to mitochondria for oxidation, which induced reactive oxygen species (ROS) accumulation, mitochondrial damage, and apoptosis activation. Furthermore, the reduction in signaling lipids, e.g., DGs, PLs and substrates, suppressed PI3K/AKT/MYC signaling pathways. Restoring MYC rescued the diminished cell viability, suppressed migratory and invasive abilities, damaged mitochondria and reduced apoptosis rate induced by CES2. CONCLUSIONS: We demonstrated that CES2 downregulation plays an important role in OSCC by maintaining lipid homeostasis and reducing lipotoxicity during tumor progression and may provide a potential therapeutic target for OSCC.


Assuntos
Carboxilesterase/metabolismo , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Hidrolases de Éster Carboxílico/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , DNA Mitocondrial/metabolismo , DNA Mitocondrial/farmacologia , DNA Mitocondrial/uso terapêutico , Diglicerídeos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Homeostase , Humanos , Mitocôndrias/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/farmacologia , Proteínas Proto-Oncogênicas c-myc/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sincalida/metabolismo , Sincalida/farmacologia , Sincalida/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
10.
Front Oncol ; 12: 798483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350568

RESUMO

The peroxidase family of peroxiredoxins (PRDXs) plays a vital role in maintaining the intracellular balance of ROS. However, their function in head and neck squamous cell carcinoma (HNSCC) has not been investigated. We therefore explored the value of PRDXs in HNSCC. We found that the expression of PRDX1, PRDX4, and PRDX5 in HNSCC increased while the expression of PRDX2 decreased. Moreover, the high expression of PRDX4/5/6 indicated a poor prognosis. Lower expression of PRDX1/5 was linked to more immune cell infiltration, higher expression of immune-related molecules and a more likely response to anti-PD-1 treatment. Moreover, PRDX5 knockdown inhibited HNSCC cell proliferation, invasion and metastasis and it might promote apoptosis through its antioxidant property. Taken together, our study highlights the potential role of PRDXs in HNSCC. The function of PRDX5 in the development of HNSCC and the formation of the immune microenvironment makes it a promising potential therapeutic target.

11.
Cell Death Dis ; 12(10): 946, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650054

RESUMO

Although obesity has been associated with an increased risk and aggressiveness of many types of carcinoma, whether it promotes squamous cell carcinoma remains unclear. To reveal the role of obesity in oral squamous cell carcinoma (OSCC) initiation and development, we used 4NQO-induced OSCC model mice to examine the impact of dietary obesity on carcinogenesis. The results showed that high-fat diet (HFD)-induced obesity significantly promoted the incidence of OSCC and altered the local immune microenvironment with the expansion of CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs). The underlying mechanism that induced an immunosuppressive local microenvironment in obesity was the recruitment of MDSCs through the CCL9/CCR1 axis and enhancement of MDSC immunosuppressive function via intracellular fatty acid uptake. Furthermore, clinical samples verified the increase in infiltrated CD33+ (a marker of human MDSCs) cells in obese OSCC patients, and data from the TCGA dataset confirmed that CD33 expression was positively correlated with local adipocytes in OSCC. Survival analysis showed that enrichment of adipocytes and high expression of CD33 were associated with poor prognosis in OSCC patients. Strikingly, depletion of MDSCs significantly ameliorated HFD-promoted carcinogenesis in 4NQO-induced model mice. These findings indicate that obesity is also an important risk factor for OSCC, and cancer immunotherapy, especially targeting MDSCs, may exhibit greater antitumor efficacy in obese patients.


Assuntos
Carcinogênese/patologia , Neoplasias Bucais/etiologia , Neoplasias Bucais/patologia , Células Supressoras Mieloides/patologia , Obesidade/complicações , 4-Nitroquinolina-1-Óxido , Adipócitos/metabolismo , Animais , Antígenos Ly , Antígeno CD11b/metabolismo , Quimiocinas CC , Dieta Hiperlipídica , Modelos Animais de Doenças , Humanos , Terapia de Imunossupressão , Proteínas Inflamatórias de Macrófagos , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Quinolonas , Receptores CCR1/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Transdução de Sinais , Análise de Sobrevida , Língua/metabolismo , Língua/patologia , Microambiente Tumoral/efeitos dos fármacos
12.
J Pain Res ; 14: 2563-2570, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456586

RESUMO

PURPOSE: Ultrasound-guided thoracic paravertebral block (TPVB) has become increasingly popular for postoperative analgesia after breast surgery. We designed this prospective, randomized, double-blind, placebo-controlled trial to test the hypothesis that TPVB is superior to placebo in improving the patient quality of recovery following modified radical mastectomy. PATIENTS AND METHODS: Sixty-eight female patients undergoing elective unilateral modified radical mastectomy were enrolled. Patients were randomized to receive preoperative ultrasound-guided TPVB with 0.5% ropivacaine (TPVB group, n=34) or 0.9% saline (Control group, n=34). The primary outcome was quality of recovery, measured 24 h after surgery using the 40-item Quality of recovery questionnaire (QoR-40). Secondary outcomes were the area under the curve of the visual analog scale pain scores over 24 h, postoperative 24-h morphine consumption, time to first rescue analgesia, length of post-anesthesia care unit stay, postoperative nausea and vomiting, and patient satisfaction. RESULTS: The global QoR-40 score 24 h postoperatively (median [interquartile range]) was 173 [170-177] in the TPVB group and 161 [160-164] in the control group (P<0.001), respectively, with a median difference (95% confidence interval) of 11 (9-14). Compared with the control group, preoperative TPVB decreased the area under the curve of the visual analog scale pain scores over 24 h, reduced postoperative 24-h morphine consumption, prolonged the time to first rescue analgesia, shortened the length of post-anesthesia care unit stay, lessened postoperative nausea and vomiting, and improved the patient satisfaction. CONCLUSION: A single preoperative injection of TPVB with ropivacaine enhances the quality of recovery and postoperative analgesia in patients following modified radical mastectomy.

13.
Front Oncol ; 11: 587862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277389

RESUMO

Current anatomic TNM stage classification fails to capture the immune heterogeneity of oral squamous cell carcinoma (OSCC). Increasing evidence indicates the strong association between epithelial-mesenchymal transition (EMT) and tumor immune response. In this study, we employed an EMT signature to classify OSCC patients into epithelial- (E-) and mesenchymal- (M-) phenotypes using TCGA and GSE41613 transcriptome data. The ESTIMATE and CIRBERSORT analyses implied that the EMT signature genes originated from the stroma of the bulk tissue. The M-subtype tumors were characterized as "immune-hot" with more immune cell infiltration than the E-subtype ones. The low infiltration of active immune cells, the high infiltration of inactive immune cells, and the high expressions of immune checkpoints demonstrated an immunosuppressive characteristic of the M-subtype tumors. Moreover, we developed and validated a novel prognostic classifier based on the EMT score, the expressions of seven immune checkpoints, and the TNM stages, which could improve the prediction efficiency of the current clinical parameter. Together, our findings provide a better understanding of the tumor immune heterogeneity and may aid guiding immunotherapy in OSCC.

14.
FASEB J ; 35(8): e21826, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34320244

RESUMO

In pancreatic cancer, autocrine insulin-like growth factor-1 (IGF-1) and paracrine insulin stimulate both IGF-1 receptor (IGF1R) and insulin receptor (IR) to increase tumor growth and glycolysis. In pancreatic cancer patients, cancer-induced glycolysis increases hepatic gluconeogenesis, skeletal muscle proteolysis, and fat lipolysis and, thereby, causes cancer cachexia. As a protein coexisting with IGF1R and IR, caveolin-1 (cav-1) may be involved in pancreatic cancer-induced cachexia. We undertook the present study to test this hypothesis. Out of wild-type MiaPaCa2 and AsPC1 human pancreatic cancer cell lines, we created their stable sub-lines whose cav-1 expression was diminished with RNA interference or increased with transgene expression. When these cells were studied in vitro, we found that cav-1 regulated IGF1R/IR expression and activation and also regulated cellular glycolysis. We transplanted the different types of MiaPaCa2 cells in growing athymic mice for 8 weeks, using intact athymic mice as tumor-free controls. We found that cav-1 levels in tumor grafts were correlated with expression levels of the enzymes that regulated hepatic gluconeogenesis, skeletal muscle proteolysis, and fat lipolysis in the respective tissues. When the tumors had original or increased cav-1, their carriers' body weight gain was less than the tumor-free reference. When cav-1 was diminished in tumors, the tumor carriers' body weight gain was not changed significantly, compared to the tumor-free reference. In conclusion, cav-1 in pancreatic cancer cells stimulated IGF1R/IR and glycolysis in the cancer cells and triggered cachectic states in the tumor carrier.


Assuntos
Caquexia/etiologia , Caveolina 1/metabolismo , Glicólise/fisiologia , Neoplasias Pancreáticas/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Animais , Caveolina 1/genética , Linhagem Celular Tumoral , Deleção de Genes , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais/metabolismo , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética
15.
Front Genet ; 12: 630794, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897760

RESUMO

TP53INP2 plays an important role in regulating gene transcription and starvation-induced autophagy, however, its function in head and neck squamous cell carcinoma (HNSCC) remains unclear. Therefore, we assessed the expression and prognostic value of TP53INP2. In addition, RNAseq, miRNAseq, copy number variation, and mutation profiles from The Cancer Genome Atlas (TCGA) dataset were applied to evaluate the distinctive genomic patterns related to TP53INP2 expression. We found that TP53INP2 expression was lower in HNSCC compared with normal controls. Patients with higher TP53INP2 expression had longer survival time. Knockdown of TP53INP2 promoted cell viability. Functional analysis exhibited that TP53INP2 was linked to DNA replication, DNA repair, cell cycle, and multiple metabolic pathways. Moreover, TP53INP2 might affect the expression of multiple genes via enhancing the transcriptional activity of nuclear hormone receptors. A competing endogenous RNA (ceRNA) network consisting of 33 lncRNAs, eight miRNAs, and 13 mRNAs was constructed based on the expression of TP53INP2. Taken together, our study highlights the potential value of TP53INP2 in predicting the survival of HNSCC and its important role in the genesis and development of HNSCC.

16.
Mol Ther Nucleic Acids ; 24: 113-126, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33738143

RESUMO

Radiotherapeutic resistance is a major obstacle for the effective treatment of colorectal cancer (CRC). MicroRNAs (miRNAs) play a critical role in chemoresistance and radioresistance. Here, we aimed to investigate whether miR-590-3p participates in the radioresistance of CRC. High expression of miR-590-3p and low expression of CLCA4 were found in both CRC tissues and cell lines. CLCA4 was indicated to be a target gene of miR-590-3p. CAF-derived exosomes were extracted and co-cultured with CRC cells, which were then exposed to radiation. CRC cells were transfected with plasmids and injected into nude mice to detect the in vivo effect of CAF-derived exosomes. Treatment with CAF-derived exosomes decreased the sensitivity of CRC cells to radiation. CAF-derived exosomes overexpressing miR-590-3p increased cell survival and the ratio of p-PI3K/PI3K and p-AKT/AKT while lowering the expressions of cleaved-PARP, cleaved-caspase 3, and γH2AX in cells. Furthermore, in vivo experimental results confirmed that CAF-derived exosomal miR-590-3p stimulated tumor growth in mice following radiotherapy. Our results demonstrate that miR-590-3p delivery via exosomes derived from CAFs enhances radioresistance in CRC through the positive regulation of the CLCA4-dependent PI3K/Akt signaling pathway.

17.
Eur Surg Res ; 61(4-5): 130-135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33260177

RESUMO

The gut hormone cholecystokinin (CCK) is primarily secreted from I-cells in the duodenum and proximal jejunum. CCK secretion is stimulated by food digests and inhibited by proteases from pancreatic juice. CCK regulates digestion and appetite, stimulates pancreatic growth, and participates in pancreatic carcinogenesis. The molecular mechanisms of CCK-induced effects are not fully understood. When the mechanisms are studied in animals, the surgical model of pancreatobiliary diversion (PBD) is frequently used. After animals have had PBD, their CCK secretion is no longer inhibited by pancreas-derived proteases, so circulating CCK is increased. PBD is established in rats and hamsters, but not in mice. In this study, we modified PBD procedures and established the model in the mouse. In an experiment, we performed PBD and sham operation (SO) in two groups of mice (20 mice per group). Twenty days after operation, 75% of the PBD mice and all SO mice survived. When plasma CCK was determined by radioimmunoassay, the PBD group had higher levels than the SO group (p < 0.001). To assess pancreatic growth, we determined pancreatic weight and pancreatic contents of protein and DNA. We also stained pancreatic sections by immunohistochemistry to show the proliferating cells that either expressed the proliferating cell nuclear antigen or were labeled with 5-bromo-2'-deoxyuridine. As a result, the pancreases of the PBD mice were heavier (p < 0.001) and had more protein (p < 0.001), DNA (p < 0.01), and proliferating cells (p < 0.01) than those of the SO counterparts. Thus, pancreatic growth was increased as a result of PBD-induced hypercholecystokininemia. The plasma and pancreatic data demonstrated that the PBD model was a success. This model may be used in CCK-related research. For instance, pancreatic cancer is frequently studied in transgenic mice. PBD may be combined with the cancer model to study the role of CCK in the molecular biology of pancreatic cancer.


Assuntos
Desvio Biliopancreático/métodos , Colecistocinina/fisiologia , Animais , Colecistocinina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Tamanho do Órgão , Pâncreas/patologia
18.
Biomed Res Int ; 2020: 4612375, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32775421

RESUMO

Immunotherapy has been demonstrated as a promising strategy in controlling head and neck squamous cell carcinoma (HNSC). The AID/APOBEC family is well characterized as DNA mutator and considered to play critical roles in immune responses in HNSC. However, the expression pattern and deamination-dependent demethylation roles of AID/APOBECs in HNSC are unclear. In this study, the RNA-seq and DNA methylation profiles of HNSC from TCGA database and cell-based experiments were applied to analyze the relationships between AID/APOBEC expression levels, patients' clinical outcomes, methylation alterations, and immune responses. Here, we found that APOBEC3H was abnormally upregulated in HNSC patients. HPV+ patients tended to have higher APOBEC3H levels than HPV- patients. Remarkably, patients with high APOBEC3H levels showed a favorable overall survival. Furthermore, tumors with high APOBEC3H levels exhibited a genome-wide DNA hypomethylation pattern. APOBEC3H was identified to demethylate and upregulate CXCL10 and improve CD8+ T cell tumor infiltration in the tumor microenvironment. Collectively, APOBEC3H plays critical roles in CD8+ T cell immune infiltration and activation in HNSC, which may be a potential biomarker for oncoimmunotherapy in HNSC.


Assuntos
Aminoidrolases/imunologia , Biomarcadores Tumorais/imunologia , Bases de Dados de Ácidos Nucleicos , Neoplasias de Cabeça e Pescoço/imunologia , Proteínas de Neoplasias/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Feminino , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Imunoterapia , Masculino , Metilação , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia
19.
Am J Chin Med ; 48(4): 1005-1019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32468825

RESUMO

Harboring insulin-producing cells, the pancreas has more interstitial insulin than any other organ. In vitro, insulin activates both insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) to stimulate pancreatic cancer cells. Whether intra-pancreatic insulin nourishes pancreatic cancer cells in vivo remains uncertain. In the present studies, we transplanted human pancreatic cancer cells orthotopically in euglycemic athymic mice whose intra-pancreatic insulin was intact or was decreased following pretreatment with streptozotocin (STZ). In the next eight weeks, the tumor carriers were treated with one of the IR/IGF1R antagonists penta-O-galloyl-[Formula: see text]-D-glucose (PGG) and epigallocatechin gallate (EGCG) or treated with vehicle. When pancreatic tumors were examined, their fraction occupied with living cells was decreased following STZ pretreatment and/or IR/IGF1R antagonism. Using Western blot, we examined tumor grafts for IR/IGF1R expression and activity. We also determined proteins that were downstream to IR/IGF1R and responsible for signal transduction, glycolysis, angiogenesis, and apoptosis. We demonstrated that STZ-induced decrease in intra-pancreatic insulin reduced IR/IGF1R expression and activity, decreased the proteins that promoted cell survival, and increased the proteins that promoted apoptosis. These suggest that intra-pancreatic insulin supported local cancer cells. When tumor carriers were treated with PGG or EGCG, the results were similar to those seen following STZ pretreatment. Thus, the biggest changes in examined proteins were usually seen when STZ pretreatment and PGG/EGCG treatment concurred. This suggests that intra-pancreatic insulin normally combated pharmacologic effects of PGG and EGCG. In conclusion, intra-pancreatic insulin nourishes pancreatic cancer cells and helps the cells resist IR/IGF1R antagonism.


Assuntos
Catequina/análogos & derivados , Taninos Hidrolisáveis/farmacologia , Insulina/fisiologia , Neoplasias Pancreáticas/patologia , Receptor de Insulina/antagonistas & inibidores , Animais , Catequina/farmacologia , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos Nus , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Estreptozocina/farmacologia
20.
J Exp Clin Cancer Res ; 39(1): 65, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293494

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) have been intensively studied in recent studies with aims of finding more concrete evidence on their mechanism of involvement in tumor progression, which is currently unknown. CAFs can secrete exosomes which are loaded with proteins, lipids and RNAs, all of which affect tumor microenvironment. The present study identified microRNA-93-5p (miR-93-5p) as a novel exosomal cargo responsible for the pro-tumorigenic effects of CAFs on colorectal cancer (CRC). METHODS: CAFs and normal fibroblasts (NFs) were isolated from cancerous tissues and matched with paracancerous tissues that had been surgically resected from CRC patients. The interaction among miR-93-5p, forkhead box A1 (FOXA1) and TGFB3 was identified through ChIP and dual luciferase reporter assays. The proliferation and apoptosis of SW480 cells co-cultured with CAFs-derived exosomes under irradiation were evaluated by CCK-8, colony formation, and flow cytometric assays. Tumorigenesis of SW480 cells in nude mice was assessed under the irradiation. RESULTS: FOXA1 was found to be associated with reduced radioresistance in CRC cells and was verified as a target of miR-93-5p. CAFs-derived exosomes contained higher miR-93-5p than those from NFs, which augmented SW480 cell proliferation and rescued them from radiation-induced apoptosis. miR-93-5p was identified as a mediator of the exosomal effects of CAFs on SW480 cells, possibly through downregulating FOXA1 and upregulating TGFB3. FOXA1 could bind to the promoter of TGFB3, thereby inhibiting nuclear accumulation of TGFB3. Also, CAFs-derived exosomes containing miR-93-5p increased the tumor growth of SW480 cells in irradiated nude mice. CONCLUSION: The present study identifies miR-93-5p as a specific exosomal cargo that rescues CRC cells against radiation-induced apoptosis.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/radioterapia , Exossomos/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta3/metabolismo , Idoso , Animais , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação para Baixo , Feminino , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Tolerância a Radiação , Fator de Crescimento Transformador beta3/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA