Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Surv Ophthalmol ; 68(6): 1011-1026, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37517683

RESUMO

Myopic choroidal neovascularization (CNV) is a vision-threatening complication of high myopia. Here, we systematically review cohort, case-control, and cross-sectional studies in PubMed, Embase, and Web of Science, and summarize the associated factors of myopic CNV using meta-analysis where applicable. Among 1,333 records assessed, 50 were found eligible, all having a low-to-moderate risk of bias. Highly myopic eyes with CNV had a higher risk of lacquer cracks (odds ratio = 2.88) and patchy chorioretinal atrophy (odds ratio = 3.43) than those without. The mean posterior staphyloma height (µm) was greater in myopic CNV eyes than in highly myopic eyes without CNV (mean difference = 82.03). The thinning of choroidal thickness (µm) between myopic eyes with and without CNV differed significantly (mean difference = -47.76). The level of vascular endothelial growth factor (pg/ml) in the aqueous humor of myopic CNV eyes was significantly higher than in highly myopic eyes without CNV (mean difference = 24.98), the same as interleukin-8 (IL-8) (pg/ml, mean difference = 7.73). Single-nucleotide polymorphisms in the vascular endothelial growth factor, complement factor I, and collagen type VIII alpha 1 genes were associated with myopic CNV. We found that myopic CNV eyes have a higher ratio of lacquer cracks and patchy chorioretinal atrophy, thinner choroid, greater posterior staphyloma height, and a higher level of vascular endothelial growth factor and IL-8 in aqueous. Structural predisposing lesions, hemodynamic, genetic, and systemic factors are also associated with myopic CNV.


Assuntos
Neovascularização de Coroide , Miopia Degenerativa , Miopia , Humanos , Interleucina-8 , Fator A de Crescimento do Endotélio Vascular , Estudos Transversais , Acuidade Visual , Estudos Retrospectivos , Miopia/complicações , Miopia/patologia , Neovascularização de Coroide/etiologia , Neovascularização de Coroide/patologia , Atrofia/complicações , Miopia Degenerativa/complicações , Angiofluoresceinografia/efeitos adversos
2.
Orphanet J Rare Dis ; 15(1): 227, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867823

RESUMO

BACKGROUND: Keratoconus (KC) is a common, degenerative disorder of the cornea, and genetic factors play a key role in its development. However, the genetic etiology of KC is still unclear. This study used the family of twins as material, using, for the first time, multi-omics analysis, to systematically display the changes in KC candidate factors in patients at the DNA, RNA, and protein levels. These can evaluate candidate pathogenic factors in depth and lock onto pathogenic targets. RESULTS: The twins in this study presented classic phenotypes, clear diagnoses, complete case data, and clinical samples, which are excellent materials for genetically studying KC. Whole-exome sequencing was conducted on both the twins and their parents. Transcriptome sequencing was conducted on proband's and health individual's primary human corneal fibroblast cells. Quantitative Real-time PCR and western blot were used to validate the differential gene expressions between the proband and controls. By integrating genomics, transcriptome, and protein level data, multiple consecutive events of KC were systematically analyzed to help better understand the molecular mechanism and genetic basis of KC. The results showed that the accumulation of rare, micro-effect risk variants was the pathogenic factor in this Chinese KC family. Consistent changes in extracellular matrices (ECMs) at the DNA and RNA levels suggested that ECM related changes play a key role in KC pathogenesis. The major gene variants (WNT16, CD248, COL6A2, COL4A3 and ADAMTS3) may affect the expression of related collagens or ECM proteins, thus reducing the amount of ECM in corneas and resulting in KC. CONCLUSIONS: This study, the first to explore the genetic etiology of KC via multi-omics analysis under the polygenetic model, has provided new insights into the genetic mechanisms underlying KC and an effective strategy for studying KC pathogenesis in the future.


Assuntos
Ceratocone , Antígenos CD , Antígenos de Neoplasias , Córnea , Matriz Extracelular/genética , Proteínas da Matriz Extracelular/genética , Fibroblastos , Humanos , Ceratocone/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA