Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 112: 117896, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39214014

RESUMO

Triple-negative breast cancer is one of the most malignant subtypes in clinical practice, and it is urgent to find new therapies. The p21-activated kinase I (PAK1) has been considered to be an attractive therapeutic target for TNBC. In this study, we designed and synthesized a series of novel PROTAC PAK1 degraders by conjugating VHL or CRBN ligase ligands to PAK1 inhibitors which are connected by alkyl chains or PEG chains. The most promising compound, 19s, can significantly degrade PAK1 protein at concentrations as low as 0.1 µM, and achieves potent anti-proliferative activity with an IC50 value of 1.27 µM in MDA-MB-231 cells. Additionally, 19s exhibits potent anti-migration activity in vitro and induces rapid tumor regression in vivo. Collectively, these findings document that 19s is a potent and novel PAK1 degrader with promising potential for TNBC treatment.


Assuntos
Antineoplásicos , Proliferação de Células , Desenho de Fármacos , Neoplasias de Mama Triplo Negativas , Quinases Ativadas por p21 , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/metabolismo , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Feminino , Relação Estrutura-Atividade , Animais , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Dose-Resposta a Droga , Camundongos , Movimento Celular/efeitos dos fármacos , Camundongos Nus
2.
Food Chem ; 460(Pt 3): 140734, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39106751

RESUMO

Angiotensin I-converting enzyme (ACE) regulates blood pressure through the renin-angiotensin system. Douchi, a traditional fermented soybean condiment, may have antihypertensive effects, but research on ACE inhibitory peptides from Douchi hydrolysates is limited. We hypothesized that enzymatic treatment could enhance ACE inhibitory peptide diversity and efficacy. We tested ten single enzymes and four combinations, finding pepsin-trypsin-chymotrypsin most effective. Hydrolysates were purified using Sephadex G-15 and reversed-phase HPLC, and peptides were identified via LC-MS/MS. Five peptides (LF, VVF, VGAW, GLFG, NGK) were identified, with VGAW as the most potent ACE inhibitor (IC50 46.6 ± 5.2 µM) showing excellent thermal and pH stability. Lineweaver-Burk plots confirmed competitive inhibition, and molecular docking revealed eight hydrogen bonds between VGAW and ACE. In hypertensive rats, VGAW significantly reduced blood pressure at 12.5, 25, and 50 mg/kg. These findings highlight Douchi as a source of ACE inhibitory peptides and suggest VGAW as a promising functional food ingredient.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Anti-Hipertensivos , Pressão Sanguínea , Hipertensão , Peptídeos , Peptidil Dipeptidase A , Ratos Endogâmicos SHR , Animais , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Ratos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/isolamento & purificação , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Hipertensão/metabolismo , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Masculino , Pressão Sanguínea/efeitos dos fármacos , Simulação de Acoplamento Molecular , Humanos , Glycine max/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Hidrólise
3.
Eur J Med Chem ; 276: 116689, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39053191

RESUMO

Acute myeloid leukemia (AML) represents a highly malignant subtype of leukemia with limited therapeutic options. In this study, we propose a novel therapeutic strategy for treating AML by inhibiting SIRT3 to regulate mitochondrial metabolism network involved in energy metabolism and epigenetic modifications essential for AML survival. A series of thieno [3,2-d]pyrimidine-6-carboxamide derivatives were designed and synthesized by structure-based strategy, 17f was documented to be a potent and acceptable selective SIRT3 inhibitor with IC50 value of 0.043 µM and exhibited profound anti-proliferative activity in MOLM13, MV4-11, and HL-60 cells. Through CETSA assay and the degree of deacetylation of intracellular SIRT3 substrates, we confirmed that 17f could effectively bind and inhibit SIRT3 activity in AML cells. Mechanistically, 17f suppressed mitochondrial function, triggered the accumulation of ROS, and significantly inhibited the production of ATP in AML cells. With the breakdown of mitochondrial function, 17f eventually induced apoptosis of AML cells. In addition, 17f also showed excellent anti-AML potential in nude mouse tumor models of HL-60-Luc. Collectively, these results demonstrate that 17f is a potent and acceptable selective SIRT3 inhibitor with promising potential to treat AML.


Assuntos
Antineoplásicos , Proliferação de Células , Desenho de Fármacos , Leucemia Mieloide Aguda , Sirtuína 3 , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos Nus , Estrutura Molecular , NAD/metabolismo , Sirtuína 3/antagonistas & inibidores , Sirtuína 3/metabolismo , Relação Estrutura-Atividade
4.
Org Lett ; 25(44): 8016-8021, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37903293

RESUMO

Direct, economical, and green synthesis of deuterated α-amino phosphine oxides remains an elusive challenge in synthetic chemistry. Herein, we report a visible-light-driven umpolung strategy for synthesizing deuterated α-amino phosphine oxides from isocyanide using 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene as the photocatalyst and D2O as the deuterium source. Moreover, the streamlined and sustainable methodology can be applied in the modification of amino acids, natural products, and drugs. The strong antiproliferative activity of the desired products indicates that the method could provide a novel privileged scaffold for antitumor drug development.

5.
Int J Biol Macromol ; 251: 126348, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37586623

RESUMO

Triple-negative breast cancer (TNBC) is the most poorly treated subtype of breast cancer, and targeting the heterogeneity of TNBC has emerged as a fascinating therapeutic strategy. In this study, we propose for the first time that dual-targeting PAK1 and HDAC6 is a promising novel strategy for TNBC treatment due to their essential roles in the regulation of energy metabolism and epigenetic modification. We discovered a novel dual-targeting PAK1/HDAC6 inhibitor, 6 - (2-(cyclopropylamino) - 6 - (2,4-dichlorophenyl) - 7 - oxopyrido [2,3-d] pyrimidin - 8 (7H) -yl) - N-hydroxyhexanamide (ZMF-23), which presented profound inhibitory activity against PAK1 and HDAC6 and robust antiproliferative potency in MDA-MB-231 cells. In addition, SPR and CETSA assay demonstrated the targeted binding of ZMF-23 with PAK1/HDAC6. Mechanically, ZMF-23 strongly inhibited the cellular PAK1 and HDAC6 activity, impeded PAK1 and HDAC6 regulated aerobic glycolysis and migration. By RNA-seq analysis, ZMF-23 was found to induce TNF-α-regulated necroptosis, which further enhanced apoptosis. Additionally, ZMF-23 triggered PAK1-tubulin/HDAC6-Stathmin regulated microtubule structure changes, which further induced the G2/M cycle arrest. Moreover, prominent anti-proliferative effect of ZMF-23 was confirmed in the TNBC xenograft zebrafish and mouse model via PAK1 and HDAC6 inhibition. Collectively, ZMF-23 is a novel dual PAK1/HDAC6 inhibitor with TNBC treatment potential.

6.
Biochim Biophys Acta Rev Cancer ; 1878(4): 188916, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37196782

RESUMO

Coactivator-associated arginine methyltransferase 1 (CARM1), a type I protein arginine methyltransferase (PRMT), has been widely reported to catalyze arginine methylation of histone and non-histone substrates, which is closely associated with the occurrence and progression of cancer. Recently, accumulating studies have demonstrated the oncogenic role of CARM1 in many types of human cancers. More importantly, CARM1 has been emerging as an attractive therapeutic target for discovery of new candidate anti-tumor drugs. Therefore, in this review, we summarize the molecular structure of CARM1 and its key regulatory pathways, as well as further discuss the rapid progress in better understanding of the oncogenic functions of CARM1. Moreover, we further demonstrate several representative targeted CARM1 inhibitors, especially focusing on demonstrating their designing strategies and potential therapeutic applications. Together, these inspiring findings would shed new light on elucidating the underlying mechanisms of CARM1 and provide a clue on discovery of more potent and selective CARM1 inhibitors for the future targeted cancer therapy.


Assuntos
Neoplasias , Proteína-Arginina N-Metiltransferases , Humanos , Histonas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismo
7.
Theranostics ; 13(2): 787-809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632213

RESUMO

ATPase family AAA domain-containing protein 2 (ATAD2) has been widely reported to be a new emerging oncogene that is closely associated with epigenetic modifications in human cancers. As a coactivator of transcription factors, ATAD2 can participate in epigenetic modifications and regulate the expression of downstream oncogenes or tumor suppressors, which may be supported by the enhancer of zeste homologue 2. Moreover, the dominant structure (AAA + ATPase and bromine domains) can make ATAD2 a potential therapeutic target in cancer, and some relevant small-molecule inhibitors, such as GSK8814 and AZ13824374, have also been discovered. Thus, in this review, we focus on summarizing the structural features and biological functions of ATAD2 from an epigenetic modulator to a cancer therapeutic target, and further discuss the existing small-molecule inhibitors targeting ATAD2 to improve potential cancer therapy. Together, these inspiring findings would shed new light on ATAD2 as a promising druggable target in cancer and provide a clue on the development of candidate anticancer drugs.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Epigênese Genética , Terapia de Alvo Molecular , Neoplasias , Humanos , Domínio AAA , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética
8.
Nat Prod Res ; 37(22): 3741-3750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36412548

RESUMO

Eleven 4-phenylcoumarins including three new 4-phenylcoumarins, mesuaferols A-C (1-3), together with eight known 4-phenylcoumarins (4-11) have been isolated from the flowering buds of Mesua ferrea. Their structures were elucidated via UV, IR, HR-ESI-MS, and NMR spectral data. Compound 9 showed moderate cytotoxic activity toward MDA-MB-231, MCF-7, HepG2 and HeLa cell lines with IC50 values of 13.68 ± 1.36 µM, 9.27 ± 1.84 µM, 21.06 ± 1.95 µM, and 7.26 ± 1.68 µM, respectively, and other compounds showed weak cytotoxicity.

9.
Acta Pharm Sin B ; 12(10): 3743-3782, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36213540

RESUMO

UNC-51-like kinase 1 (ULK1), as a serine/threonine kinase, is an autophagic initiator in mammals and a homologous protein of autophagy related protein (Atg) 1 in yeast and of UNC-51 in Caenorhabditis elegans. ULK1 is well-known for autophagy activation, which is evolutionarily conserved in protein transport and indispensable to maintain cell homeostasis. As the direct target of energy and nutrition-sensing kinase, ULK1 may contribute to the distribution and utilization of cellular resources in response to metabolism and is closely associated with multiple pathophysiological processes. Moreover, ULK1 has been widely reported to play a crucial role in human diseases, including cancer, neurodegenerative diseases, cardiovascular disease, and infections, and subsequently targeted small-molecule inhibitors or activators are also demonstrated. Interestingly, the non-autophagy function of ULK1 has been emerging, indicating that non-autophagy-relevant ULK1 signaling network is also linked with diseases under some specific contexts. Therefore, in this review, we summarized the structure and functions of ULK1 as an autophagic initiator, with a focus on some new approaches, and further elucidated the key roles of ULK1 in autophagy and non-autophagy. Additionally, we also discussed the relationships between ULK1 and human diseases, as well as illustrated a rapid progress for better understanding of the discovery of more candidate small-molecule drugs targeting ULK1, which will provide a clue on novel ULK1-targeted therapeutics in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA