Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7243, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36433954

RESUMO

Exonic circular RNAs (circRNAs) produce predominantly non-coding RNA species that have been recently profiled in many tumors. However, their functional contribution to cancer progression is still poorly understood. Here, we identify the circRNAs expressed in soft tissue sarcoma cells and explore how the circRNAs regulate sarcoma growth in vivo. We show that circCsnk1g3 and circAnkib1 promote tumor growth by shaping a pro-tumorigenic microenvironment, possibly due to their capabilities to regulate tumor-promoting elements extrinsic to the tumor cells. Accordingly, circCsnk1g3 and circAnkib1 can control the expression of interferon-related genes and pro-inflammatory factors in the sarcoma cells, thus directing immune cell recruitment into the tumor mass, and hence their activation. Mechanistically, circRNAs may repress pro-inflammatory elements by buffering activation of the pathways mediated by RIG-I, the cytosolic viral RNA sensor. The current findings suggest that the targeting of specific circRNAs could augment the efficacy of tumor and immune response to mainstay therapies.


Assuntos
Carcinogênese , Interferons , RNA Circular , Sarcoma , Neoplasias de Tecidos Moles , Microambiente Tumoral , Humanos , Carcinogênese/genética , Carcinogênese/imunologia , Interferons/genética , Interferons/imunologia , RNA Circular/genética , RNA Circular/imunologia , Sarcoma/genética , Sarcoma/imunologia , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Caseína Quinase I/genética , Caseína Quinase I/imunologia
2.
Nature ; 606(7914): 585-593, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35483404

RESUMO

Severe COVID-19 is characterized by persistent lung inflammation, inflammatory cytokine production, viral RNA and a sustained interferon (IFN) response, all of which are recapitulated and required for pathology in the SARS-CoV-2-infected MISTRG6-hACE2 humanized mouse model of COVID-19, which has a human immune system1-20. Blocking either viral replication with remdesivir21-23 or the downstream IFN-stimulated cascade with anti-IFNAR2 antibodies in vivo in the chronic stages of disease attenuates the overactive immune inflammatory response, especially inflammatory macrophages. Here we show that SARS-CoV-2 infection and replication in lung-resident human macrophages is a critical driver of disease. In response to infection mediated by CD16 and ACE2 receptors, human macrophages activate inflammasomes, release interleukin 1 (IL-1) and IL-18, and undergo pyroptosis, thereby contributing to the hyperinflammatory state of the lungs. Inflammasome activation and the accompanying inflammatory response are necessary for lung inflammation, as inhibition of the NLRP3 inflammasome pathway reverses chronic lung pathology. Notably, this blockade of inflammasome activation leads to the release of infectious virus by the infected macrophages. Thus, inflammasomes oppose host infection by SARS-CoV-2 through the production of inflammatory cytokines and suicide by pyroptosis to prevent a productive viral cycle.


Assuntos
COVID-19 , Inflamassomos , Macrófagos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19/patologia , COVID-19/fisiopatologia , COVID-19/virologia , Humanos , Inflamassomos/metabolismo , Interleucina-1 , Interleucina-18 , Pulmão/patologia , Pulmão/virologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/virologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pneumonia/metabolismo , Pneumonia/virologia , Piroptose , Receptores de IgG , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade
3.
Trends Biochem Sci ; 45(12): 1022-1034, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32900574

RESUMO

Circular RNAs (circRNAs) are a diverse class of RNAs with varying sizes, cellular abundance, and biological functions. Investigations from the past decade have revealed that circRNAs are ubiquitously found in eukaryotes and have defined the different biological roles of circRNAs to illuminate this previously unrecognized class of molecules. In the context of the immune system, immune responses and immune-related diseases alter circRNA expression. More recently, several oncogenic double-stranded DNA viruses have been found to encode circRNAs. In this review, we summarize the current understanding of circRNAs and their emerging functions in immune regulation and autoimmune disorders, and discuss the identification and potential roles of viral circRNAs during infections. Finally, we present promising areas for future investigations in the nascent field of circRNAs.


Assuntos
RNA Circular , RNA Viral , Viroses , Humanos , Imunidade/genética , RNA Circular/imunologia , RNA Viral/genética , RNA Viral/imunologia , Viroses/genética
4.
Mol Cell ; 76(1): 96-109.e9, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31474572

RESUMO

Circular RNAs (circRNAs) are prevalent in eukaryotic cells and viral genomes. Mammalian cells possess innate immunity to detect foreign circRNAs, but the molecular basis of self versus foreign identity in circRNA immunity is unknown. Here, we show that N6-methyladenosine (m6A) RNA modification on human circRNAs inhibits innate immunity. Foreign circRNAs are potent adjuvants to induce antigen-specific T cell activation, antibody production, and anti-tumor immunity in vivo, and m6A modification abrogates immune gene activation and adjuvant activity. m6A reader YTHDF2 sequesters m6A-circRNA and is essential for suppression of innate immunity. Unmodified circRNA, but not m6A-modified circRNA, directly activates RNA pattern recognition receptor RIG-I in the presence of lysine-63-linked polyubiquitin chain to cause filamentation of the adaptor protein MAVS and activation of the downstream transcription factor IRF3. CircRNA immunity has considerable parallel to prokaryotic DNA restriction modification system that transforms nucleic acid chemical modification into organismal innate immunity.


Assuntos
Adenosina/análogos & derivados , Imunidade Inata , Melanoma Experimental/terapia , RNA Circular/imunologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina/administração & dosagem , Adenosina/imunologia , Adenosina/metabolismo , Adjuvantes Imunológicos/administração & dosagem , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proteína DEAD-box 58/imunologia , Proteína DEAD-box 58/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Imunização , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferons/imunologia , Interferons/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Poliubiquitina/imunologia , Poliubiquitina/metabolismo , Multimerização Proteica , RNA Circular/administração & dosagem , RNA Circular/metabolismo , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/metabolismo , Receptores Imunológicos , Ubiquitinação
5.
Cell ; 173(6): 1398-1412.e22, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29731168

RESUMO

Noncoding mutations in cancer genomes are frequent but challenging to interpret. PVT1 encodes an oncogenic lncRNA, but recurrent translocations and deletions in human cancers suggest alternative mechanisms. Here, we show that the PVT1 promoter has a tumor-suppressor function that is independent of PVT1 lncRNA. CRISPR interference of PVT1 promoter enhances breast cancer cell competition and growth in vivo. The promoters of the PVT1 and the MYC oncogenes, located 55 kb apart on chromosome 8q24, compete for engagement with four intragenic enhancers in the PVT1 locus, thereby allowing the PVT1 promoter to regulate pause release of MYC transcription. PVT1 undergoes developmentally regulated monoallelic expression, and the PVT1 promoter inhibits MYC expression only from the same chromosome via promoter competition. Cancer genome sequencing identifies recurrent mutations encompassing the human PVT1 promoter, and genome editing verified that PVT1 promoter mutation promotes cancer cell growth. These results highlight regulatory sequences of lncRNA genes as potential disease-associated DNA elements.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Genes myc , RNA Longo não Codificante/genética , Animais , Neoplasias da Mama/metabolismo , Sistemas CRISPR-Cas , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Cromatina , DNA de Neoplasias/genética , Elementos Facilitadores Genéticos , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Mutação , Transplante de Neoplasias , Regiões Promotoras Genéticas , RNA Longo não Codificante/metabolismo , Transcrição Gênica
6.
Nat Immunol ; 18(9): 962-972, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28829444

RESUMO

Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression in the immune system. Studies have shown that lncRNAs are expressed in a highly lineage-specific manner and control the differentiation and function of innate and adaptive cell types. In this Review, we focus on mechanisms used by lncRNAs to regulate genes encoding products involved in the immune response, including direct interactions with chromatin, RNA and proteins. In addition, we address new areas of lncRNA biology, such as the functions of enhancer RNAs, circular RNAs and chemical modifications to RNA in cellular processes. We emphasize critical gaps in knowledge and future prospects for the roles of lncRNAs in the immune system and autoimmune disease.


Assuntos
Imunidade Adaptativa/genética , Regulação da Expressão Gênica , Imunidade Inata/genética , Linfopoese/genética , Mielopoese/genética , RNA Longo não Codificante/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Diferenciação Celular , Linhagem da Célula , Cromatina/metabolismo , DNA/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , RNA/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
7.
Nature ; 548(7667): 338-342, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28792938

RESUMO

N6-methyladenosine (m6A) is the most common and abundant messenger RNA modification, modulated by 'writers', 'erasers' and 'readers' of this mark. In vitro data have shown that m6A influences all fundamental aspects of mRNA metabolism, mainly mRNA stability, to determine stem cell fates. However, its in vivo physiological function in mammals and adult mammalian cells is still unknown. Here we show that the deletion of m6A 'writer' protein METTL3 in mouse T cells disrupts T cell homeostasis and differentiation. In a lymphopaenic mouse adoptive transfer model, naive Mettl3-deficient T cells failed to undergo homeostatic expansion and remained in the naive state for up to 12 weeks, thereby preventing colitis. Consistent with these observations, the mRNAs of SOCS family genes encoding the STAT signalling inhibitory proteins SOCS1, SOCS3 and CISH were marked by m6A, exhibited slower mRNA decay and showed increased mRNAs and levels of protein expression in Mettl3-deficient naive T cells. This increased SOCS family activity consequently inhibited IL-7-mediated STAT5 activation and T cell homeostatic proliferation and differentiation. We also found that m6A has important roles for inducible degradation of Socs mRNAs in response to IL-7 signalling in order to reprogram naive T cells for proliferation and differentiation. Our study elucidates for the first time, to our knowledge, the in vivo biological role of m6A modification in T-cell-mediated pathogenesis and reveals a novel mechanism of T cell homeostasis and signal-dependent induction of mRNA degradation.


Assuntos
Adenosina/análogos & derivados , Homeostase , Interleucina-7/imunologia , RNA Mensageiro/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Linfócitos T/citologia , Adenosina/metabolismo , Transferência Adotiva , Animais , Diferenciação Celular , Proliferação de Células , Colite/prevenção & controle , Proteínas de Ligação a DNA/deficiência , Modelos Animais de Doenças , Feminino , Masculino , Metilação , Metiltransferases/deficiência , Camundongos , Estabilidade de RNA , RNA Mensageiro/química , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo
8.
Mol Cell ; 67(2): 228-238.e5, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28625551

RESUMO

Circular RNAs (circRNAs) are single-stranded RNAs that are joined head to tail with largely unknown functions. Here we show that transfection of purified in vitro generated circRNA into mammalian cells led to potent induction of innate immunity genes and confers protection against viral infection. The nucleic acid sensor RIG-I is necessary to sense foreign circRNA, and RIG-I and foreign circRNA co-aggregate in cytoplasmic foci. CircRNA activation of innate immunity is independent of a 5' triphosphate, double-stranded RNA structure, or the primary sequence of the foreign circRNA. Instead, self-nonself discrimination depends on the intron that programs the circRNA. Use of a human intron to express a foreign circRNA sequence abrogates immune activation, and mature human circRNA is associated with diverse RNA binding proteins reflecting its endogenous splicing and biogenesis. These results reveal innate immune sensing of circRNA and highlight introns-the predominant output of mammalian transcription-as arbiters of self-nonself identity.


Assuntos
Vírus da Encefalite Equina Venezuelana/imunologia , Encefalomielite Equina Venezuelana/prevenção & controle , Tolerância Imunológica , Imunidade Inata , Íntrons , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/imunologia , RNA/genética , RNA/imunologia , Animais , Sequência de Bases , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/imunologia , Proteína DEAD-box 58/metabolismo , Vírus da Encefalite Equina Venezuelana/genética , Vírus da Encefalite Equina Venezuelana/metabolismo , Encefalomielite Equina Venezuelana/genética , Encefalomielite Equina Venezuelana/imunologia , Encefalomielite Equina Venezuelana/metabolismo , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Tolerância Imunológica/genética , Imunidade Inata/genética , Camundongos , Conformação de Ácido Nucleico , Ligação Proteica , Células RAW 264.7 , RNA/biossíntese , RNA/química , RNA Circular , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores Imunológicos , Spliceossomos/imunologia , Spliceossomos/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA