Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Zhongguo Zhen Jiu ; 44(7): 807-20, 2024 Jul 12.
Artigo em Chinês | MEDLINE | ID: mdl-38986595

RESUMO

OBJECTIVE: To explore the potential mechanism of electroacupuncture (EA) for vascular dementia (VD) using tandem mass tag (TMT) quantitative proteomics technology. METHODS: Among 80 male SPF SD rats, 78 rats which met the selection criteria through the Morris water maze test were selected and randomly divided into a sham surgery group (18 rats) and a surgery group (60 rats). VD model was established by four-vessel occlusion (4-VO) method in the surgery group, and 36 rats with successful modeling were randomly assigned to a model group (18 rats) and an EA group (18 rats). Each group was further divided into three subgroups based on intervention duration, with each subgroup containing 6 rats. Seven days after model establishment, the EA group received EA intervention at left and right "Sishencong" (EX-HN 1) and bilateral "Fengchi" (GB 20), with continuous wave at a frequency of 2 Hz and current intensity of 1 mA, daily for 30 min, with subgroups receiving EA for 7, 14, or 21 d respectively. Cognitive function before and after interventions was assessed using Morris water maze. Proteomic analysis was conducted on the optimal EA subgroup and corresponding sham surgery and model subgroups, identifying differentially expressed proteins and analyzing them through bioinformatics. Differentially expressed target proteins was performed using parallel reaction monitoring (PRM) and Western blot techniques. RESULTS: Compared to the sham surgery group, the model group exhibited prolonged escape latency and reduced number of platform crossings (P<0.01); compared with model group, the EA group showed reductions in escape latency and increased platform crossings after 7, 14, and 21 days of intervention (P<0.01, P<0.05). Compared to the 7 and 14-day intervention, the rats in the EA group of 21-day intervention showed the most significant improvements in reductions of escape latency and increased platform crossings (P<0.01, P<0.05), and was selected for further proteomic, PRM analyses, and Western blot validation. Compared to the sham surgery group, the model group displayed 71 differentially expressed proteins, with 50 up-regulated and 21 down-regulated proteins; compared to the model group, the EA group had 54 differentially expressed proteins, with 30 up-regulated and 24 down-regulated proteins. Functional enrichment and clustering analyses indicated that these proteins were primarily associated with cellular processes, metabolic processes, phagocytosis recognition, immune response, and regulation of extracellular matrix, etc. Enrichment was observed in the mammalian target of rapamycin (mTOR) signaling pathway and neurotrophic factors signaling pathways, involving glycogen synthase kinase 3ß (GSK3ß) and mitogen-activated protein kinase kinase 2 (Map2k2), with PRM and Western blot findings consistent with the proteomic results. Which meant that compared with the model group, the protein expression of GSK3ß and Map2k2 of hippocampus was increased in the EA group (P<0.01, P<0.05). CONCLUSION: EA at "Sishencong" (EX-HN 1) and "Fengchi" (GB 20) could improve cognitive function in VD rats, with the mechanism involving multiple targets and pathways, potentially related to GSK3ß, Map2k2 proteins, and the mTOR and neurotrophic factor signaling pathways.


Assuntos
Demência Vascular , Eletroacupuntura , Proteômica , Ratos Sprague-Dawley , Animais , Demência Vascular/terapia , Demência Vascular/metabolismo , Masculino , Ratos , Humanos , Aprendizagem em Labirinto , Memória , Modelos Animais de Doenças
2.
Biomed Pharmacother ; 174: 116507, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565059

RESUMO

Thioredoxin reductase 1 (TrxR1) has emerged as a promising target for cancer therapy. In our previous research, we discovered several new TrxR1 inhibitors and found that they all have excellent anti-tumor activity. At the same time, we found these TrxR1 inhibitors all lead to an increase in AKT phosphorylation in cancer cells, but the detailed role of AKT phosphorylation in TrxR1 inhibitor-mediated cell death remains unclear. In this study, we identified the combination of AKT and TrxR1 inhibitor displayed a strong synergistic effect in colon cancer cells. Furthermore, we demonstrated that the synergistic effect of auranofin (TrxR1 inhibitor) and MK-2206 (AKT inhibitor) was caused by ROS accumulation. Importantly, we found that ATM inhibitor KU-55933 can block the increase of AKT phosphorylation caused by auranofin, and exhibited a synergistic effect with auranofin. Taken together, our study demonstrated that the activation of ATM/AKT pathway is a compensatory mechanism to cope with ROS accumulation induced by TrxR1 inhibitor, and synergistic targeting of TrxR1 and ATM/AKT pathway is a promising strategy for treating colon cancer.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Auranofina , Neoplasias do Colo , Sinergismo Farmacológico , Compostos Heterocíclicos com 3 Anéis , Proteínas Proto-Oncogênicas c-akt , Pironas , Espécies Reativas de Oxigênio , Transdução de Sinais , Tiorredoxina Redutase 1 , Humanos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tiorredoxina Redutase 1/metabolismo , Tiorredoxina Redutase 1/antagonistas & inibidores , Auranofina/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Linhagem Celular Tumoral , Fosforilação/efeitos dos fármacos , Morfolinas/farmacologia , Células HCT116
3.
World J Gastrointest Surg ; 16(3): 932-943, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38577076

RESUMO

BACKGROUND: Genetic factors of chronic intestinal ulcers are increasingly garnering attention. We present a case of chronic intestinal ulcers and bleeding associated with mutations of the activin A receptor type II-like 1 (ACVRL1) and phospholipase A2 group IVA (PLA2G4A) genes and review the available relevant literature. CASE SUMMARY: A 20-year-old man was admitted to our center with a 6-year history of recurrent abdominal pain, diarrhea, and dark stools. At the onset 6 years ago, the patient had received treatment at a local hospital for abdominal pain persisting for 7 d, under the diagnosis of diffuse peritonitis, acute gangrenous appendicitis with perforation, adhesive intestinal obstruction, and pelvic abscess. The surgical treatment included exploratory laparotomy, appendectomy, intestinal adhesiolysis, and pelvic abscess removal. The patient's condition improved and he was discharged. However, the recurrent episodes of abdominal pain and passage of black stools started again one year after discharge. On the basis of these features and results of subsequent colonoscopy, the clinical diagnosis was established as inflammatory bowel disease (IBD). Accordingly, aminosalicylic acid, immunotherapy, and related symptomatic treatment were administered, but the symptoms of the patient did not improve significantly. Further investigations revealed mutations in the ACVRL1 and PLA2G4A genes. ACVRL1 and PLA2G4A are involved in angiogenesis and coagulation, respectively. This suggests that the chronic intestinal ulcers and bleeding in this case may be linked to mutations in the ACVRL1 and PLA2G4A genes. Oral Kangfuxin liquid was administered to promote healing of the intestinal mucosa and effectively manage clinical symptoms. CONCLUSION: Mutations in the ACVRL1 and PLA2G4A genes may be one of the causes of chronic intestinal ulcers and bleeding in IBD. Orally administered Kangfuxin liquid may have therapeutic potential.

4.
Int J Surg ; 110(5): 2855-2864, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38329144

RESUMO

INTRODUCTION: Preservation fluid (PF) contaminations are common in conventional liver transplantation (CLT) and presumably originate from organ or PF exposures to the external environment in a non-strict sterile manner. Such exposures and PF contamination may be avoided in ischaemia-free liver transplantation (IFLT) because of the strict sterile surgical procedures. In this study, the authors evaluated the impact of IFLT on organ PF contamination. METHODS: A post-hoc analysis using data from the first randomized controlled trial of IFLT was performed to compare the incidence, pathogenic spectrum of PF contamination, and incidence of early recipient infection between IFLT and CLT. Multivariable logistic regression was used to explore risk factors for PF contamination. RESULTS: Of the 68 cases recruited in the trial, 64 were included in this post-hoc analysis. The incidence of culture-positive PF was 9.4% (3/32) in the IFLT group versus 78.1% (25/32) in the CLT group ( P <0.001). Three microorganisms were isolated from PF in the IFLT group, while 43 were isolated in the CLT group. The recipient infection rate within postoperative day 14 was 3.1% (1/32) in the IFLT group vs 15.6% (5/32) in the CLT group, although this difference did not reach statistical significance ( P =0.196). Multivariate analysis revealed that adopting IFLT is an independent protective factor for culture-positive PF. CONCLUSION: PF contamination is substantially decreased in IFLT, and IFLT application is an independent protective factor for PF contamination. Using rigorous sterile measures and effective antibiotic therapy during IFLT may decrease PF contamination.


Assuntos
Transplante de Fígado , Soluções para Preservação de Órgãos , Preservação de Órgãos , Humanos , Transplante de Fígado/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Preservação de Órgãos/métodos , Adulto , Idoso
5.
Int J Biol Sci ; 20(1): 249-264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164168

RESUMO

Lung cancer is one of the most lethal diseases in the world. Although there has been significant progress in the treatment of lung cancer, there is still a lack of effective strategies for advanced cases. Lenvatinib, a multi-targeted tyrosine kinase inhibitor, has achieved much attention due to its antitumor properties. Nevertheless, the use of lenvatinib is restricted by the characteristics of poor efficacy and drug resistance. In this study, we assessed the effectiveness of lenvatinib combined with thioredoxin reductase 1 (TrxR1) inhibitors in human lung cancer cells. Our results indicate that the combination therapy involving TrxR1 inhibitors and lenvatinib exhibited significant synergistic antitumor effects in human lung cancer cells. Moreover, siTrxR1 also showed significant synergy with lenvatinib in lung cancer cells. Mechanically, we demonstrated that ROS accumulation significantly contributes to the synergism between lenvatinib and TrxR1 inhibitor auranofin. Furthermore, the combination of lenvatinib and auranofin can activate endoplasmic reticulum stress and JNK signaling pathways to achieve the goal of killing lung cancer cells. Importantly, combination therapy with lenvatinib and auranofin exerted a synergistic antitumor effect in vivo. To sum up, the combination therapy involving lenvatinib and auranofin may be a potential strategy for treating lung cancer.


Assuntos
Neoplasias Pulmonares , Tiorredoxina Redutase 1 , Humanos , Tiorredoxina Redutase 1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Auranofina/farmacologia , Auranofina/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Morte Celular
6.
Cell Death Discov ; 9(1): 375, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833257

RESUMO

Colon cancer is a major cause of cancer-related death. Despite recent improvements in the treatment of colon cancer, new strategies to improve the overall survival of patients are urgently needed. Heat shock protein 90 (HSP90) is widely recognized as a promising target for treating various cancers, including colon cancer. However, no HSP90 inhibitor has been approved for clinical use due to limited efficacy. In this study, we evaluated the antitumor activities of HSP90 inhibitors in combination with piperlongumine in colon cancer cells. We show that combination treatment with HSP90 inhibitors and piperlongumine displayed strong synergistic interaction in colon cancer cells. These agents synergize by promoting ER stress, JNK activation, and DNA damage. This process is fueled by oxidative stress, which is caused by the accumulation of reactive oxygen species. These studies nominated piperlongumine as a promising agent for HSP90 inhibitor-based combination therapy against colon cancer.

7.
Lupus ; 32(11): 1237-1244, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37695664

RESUMO

BACKGROUND: Despite progress in the diagnosis and treatment of proliferative lupus nephritis (PLN), the prognosis remains unfavorable. Previous investigations have suggested that the deficiency of regulatory T cells (Tregs) is involved in the pathogenesis of systemic lupus erythematosus (SLE) and lupus nephritis (LN). But the prognostic value of Tregs in PLN remains controversial. This study aimed to investigate the association of Tregs with renal outcomes in patients with PLN. METHODS: The baseline and follow-up data of patients with biopsy-proven PLN were collected in this study. All patients were divided into two groups according to whether the renal endpoint event occurred. Clinicopathologic features and therapeutic responses were compared between the two groups. Cox regression analyses curve fitting and threshold effect analysis were implemented to investigate the relationship between Tregs level and the long-term renal outcomes. The renal endpoint was defined as end-stage kidney disease (ESKD) or doubling the SCr value. RESULTS: A total of 405 PLN patients were included. After a follow-up of 71.53 (53.13-97.47) months, 42 (10.4%) patients reached the renal endpoint. The Treg cell counts (16/µL) in the renal endpoint group were significantly decreased than that in the non-renal endpoint group (p < 0.001). Univariate and multivariate Cox regression analyses showed that the high level of Tregs was an independent protective factor for the long-term renal prognosis of PLN. Smooth curve fitting of the generalized additive mixed model analysis indicated that the risk of renal endpoint first decreased with Tregs and then slightly increased along with Treg cell levels. The segmented linear model revealed that when Treg cell counts <46/µL, the risk of renal endpoint decreased by 6.8% for every 1 µL increase in Treg levels (p = 0.0029). CONCLUSION: Treg cell counts are closely related to the long-term renal outcomes of patients with PLN, and increasing Treg cell levels may play an important role in improving the prognosis of the kidney, but there may be a turning point (i.e., threshold effect) at the Treg cell counts that leads to directional changes in the renal outcomes.


Assuntos
Falência Renal Crônica , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Nefrite Lúpica/tratamento farmacológico , Linfócitos T Reguladores , Lúpus Eritematoso Sistêmico/complicações , Rim/patologia , Falência Renal Crônica/etiologia , Estudos Retrospectivos
8.
Mater Today Bio ; 21: 100721, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37502829

RESUMO

Development of lysosomes and mitochondria dual-targeting photosensitizer with the virtues of near-infrared (NIR) emission, highly efficient reactive oxygen generation, good phototoxicity and biocompatibility is highly desirable in the field of imaging-guided photodynamic therapy (PDT) for cancer. Herein, a new positively charged amphiphilic organic compound (2-(2-(5-(7-(4-(diphenylamino)phenyl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)vinyl)-3-methylbenzo[d]thiazol-3-ium iodide) (ADB) based on a D-A-π-A structure is designed and comprehensively investigated. ADB demonstrates special lysosomes and mitochondria dual-organelles targeting, bright NIR aggregation-induced emission (AIE) at 736 â€‹nm, high singlet oxygen (1O2) quantum yield (0.442), as well as good biocompatibility and photostability. In addition, ADB can act as a two-photon imaging agent for the elaborate observation of living cells and blood vessel networks of tissues. Upon light irradiation, obvious decrease of mitochondrial membrane potential (MMP), abnormal mitochondria morphology, as well as phagocytotic vesicles and lysosomal disruption in cells are observed, which further induce cell apoptosis and resulting in enhanced antitumor activity for cancer treatment. In vivo experiments reveal that ADB can inhibit tumor growth efficiently upon light exposure. These findings demonstrate that this dual-organelles targeted ADB has great potential for clinical imaging-guided photodynamic therapy, and this work provides a new avenue for the development of multi-organelles targeted photosensitizers for highly efficient cancer treatment.

9.
Tissue Cell ; 82: 102105, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37172427

RESUMO

Lipid metabolism is believed to play an important role in cancer. This study aimed to investigate the role and possible mechanism of fatty acid transporter protein 2 (FATP2) in non-small cell lung cancer (NSCLC). FATP2 expression and its relationship with NSCLC prognosis were analyzed using the TCGA database. The si-RNA was used to intervene FATP2 in NSCLC cells, and the effects of si-FATP2 on cell proliferation, apoptosis, lipid deposition, endoplasmic reticulum (ER) morphology, and the proteins expressions of fatty acid metabolism and ER stress were analyzed. In addition, Co-IP analyzed the interaction between FATP2 and ACSL1, and further analyzed the possible mechanism of FATP2 in regulating lipid metabolism using pcDNA-ACSL1. Results found that FATP2 was overexpressed in NSCLC and associated with poor prognosis. Si-FATP2 significantly inhibited the proliferation and lipid metabolism of A549 and HCC827 cells, and induced ER stress to promote apoptosis. Further studies confirmed the protein interaction between FATP2 and ACSL1. Si-FATP2 and pcDNA-ACSL1 co-transfection further inhibit the proliferation and lipid deposition of NSCLS cells, and promote the decomposition of fatty acids. In conclusion, FATP2 promoted the progression of NSCLC by regulating lipid metabolism through ACSL1.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Ácidos Graxos , Metabolismo dos Lipídeos/genética , Neoplasias Pulmonares/genética , RNA/metabolismo
10.
Res Sq ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37090634

RESUMO

X-linked hypophosphatemia (XLH) is a rare disease of elevated fibroblast growth factor 23 (FGF23) production that leads to hypophosphatemia and poor mineralization of bone and teeth. The clinical manifestations of XLH include a high prevalence of dental abscesses, likely driven by poorly formed structures of the dentoalveolar complex, including the alveolar bone, cementum, dentin, and periodontal ligament. Our previous studies have demonstrated that sclerostin antibody (Scl-Ab) treatment improves phosphate homeostasis, and increases bone mass, strength and mineralization in the Hyp mouse model of XLH. In the current study, we investigated whether Scl-Ab impacts the dentoalveolar structures of Hyp mice. Male and female wild-type and Hyp littermates were injected with 25 mg/kg of vehicle or Scl-Ab twice weekly beginning at 12 weeks of age and euthanized at 20 weeks of age. Scl-Ab increased alveolar bone mass in both male and female mice and alveolar tissue mineral density in the male mice. The positive effects of Scl-Ab were consistent with an increase in the fraction of active (non-phosphorylated) ß-catenin stained alveolar osteocytes. Scl-Ab had no effect on mineralized tissues of the tooth - dentin, enamel, acellular and cellular cementum. There was a non-significant trend toward increased periodontal ligament (PDL) attachment fraction within the Hyp mice. Additional PDL fibral structural parameters were not affected by Scl-Ab. The current study demonstrates that Scl-Ab can improve alveolar bone in the Hyp mouse model of XLH.

11.
J Am Soc Nephrol ; 34(2): 258-272, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36261300

RESUMO

BACKGROUND: Lupus nephritis (LN) is one of the most severe complications of systemic lupus erythematosus, with heterogeneous phenotypes and different responses to therapy. Identifying genetic causes of LN can facilitate more individual treatment strategies. METHODS: We performed whole-exome sequencing in a cohort of Chinese patients with LN and identified variants of a disease-causing gene. Extensive biochemical, immunologic, and functional analyses assessed the effect of the variant on type I IFN signaling. We further investigated the effectiveness of targeted therapy using single-cell RNA sequencing. RESULTS: We identified a novel DDX58 pathogenic variant, R109C, in five unrelated families with LN. The DDX58 R109C variant is a gain-of-function mutation, elevating type I IFN signaling due to reduced autoinhibition, which leads to RIG-I hyperactivation, increased RIG-I K63 ubiquitination, and MAVS aggregation. Transcriptome analysis revealed an increased IFN signature in patient monocytes. Initiation of JAK inhibitor therapy (baricitinib 2 mg/d) effectively suppressed the IFN signal in one patient. CONCLUSIONS: A novel DDX58 R109C variant that can cause LN connects IFNopathy and LN, suggesting targeted therapy on the basis of pathogenicity. PODCAST: This article contains a podcast at.


Assuntos
Interferon Tipo I , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Perfilação da Expressão Gênica , Transdução de Sinais , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/uso terapêutico , Receptores Imunológicos/genética
12.
Clin Kidney J ; 15(11): 2027-2038, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36325013

RESUMO

Background: Heterozygous loss-of-function mutations in the tumour necrosis factor alpha induced protein 3 (TNFAIP3) gene cause an early-onset auto-inflammatory disease named haploinsufficiency of A20 (HA20). Here we describe three unrelated patients with autoimmune lupus nephritis (LN) phenotypes carrying three novel mutations in the TNFAIP3 gene. Methods: Whole-exome sequencing (WES) was used to identify the causative mutations in three biopsy-proven LN patients. Sanger sequencing and quantitative polymerase chain reaction (qPCR) were used to validate the mutations identified by WES. RNA sequencing, qPCR and cytometric bead array was used to detect inflammatory signatures in the patients. Results: The patients predominantly presented with an autoimmune phenotype, including autoimmune haemolytic anaemia, multipositive autoantibodies and LN. Additionally, novel phenotypes of allergy and pericardial effusion were first reported. WES identified three novel heterozygous mutations in the TNFAIP3 gene, including a novel splicing mutation located in the canonical splicing site (c.634+2T>C) resulting in an intron 4 insertion containing a premature stop codon, a de novo novel copy number variation (exon 7-8 deletion) and a novel nonsense mutation c.1300_1301delinsTA causing a premature stop codon. We further identified hyperactivation signatures of nuclear factor- kappa B and type I IFN signalling and overproduction of pro-inflammatory cytokines in the blood. This report expanded the phenotype to a later age, as two girls were diagnosed at age 3 years and one man at age 29 years. Conclusions: Kidney involvement may be the main feature of the clinical spectrum of HA20, even in adults. Genetic screening should be considered for early-onset LN patients.

13.
Front Pharmacol ; 13: 903171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814234

RESUMO

Prunella vulgaris L. (PVL) is dried fruit spike of Lamiacea plant Prunella vulgaris L., which is a perennial herb with medicinal and edible homology used for thousands of years. PVL is bitter, acrid, cold, and belongs to the liver and gallbladder meridians. It clears the liver and dissipate fire, improve vision, disperse swelling, and has satisfactory clinical therapeutic effects on many diseases such as photophobia, dizziness, scrofula, goiter, breast cancer. The collection of information and data related to PVL comes from literatures retrieved and collated from various online scientific databases (such as CNKI, VIP, PubMed, Web of Science, Research Gate, Science Database), ancient books of traditional chinese medicine (Encyclopedia of Traditional Chinese Medicine, Classics of Traditional Chinese Medicine, Dictionary of Traditional Chinese Medicine), and Doctoral and Master's Dissertations. Currently, the major chemical constituents isolated and identified from PVL are triterpenoids, steroids, flavonoids, phenylpropanoids, organic acids, volatile oils and polysaccharides. Modern pharmacological studies have shown that PVL has a wide range of pharmacological activities, including anti-inflammatory, anti-tumor, antibacterial and antiviral effects, as well as immune regulation, antihypertensive, hypoglycemic, lipid-lowering, antioxidant, free radical scavenging, liver protection, sedative and hypnotic effects. This paper reviewes the botany, ethnopharmacology, traditional application, phytochemistry, analytical methods, quality control, pharmacological effects of PVL. It can be used not only as medicine, but also gradually integrated into the "medicine and food homology" and "Chinese medicine health" boom. More importantly, it has great potential for drug resources development. This paper deeply discusses the shortcomings of current PVL research, and proposes corresponding solutions, in order to find a breakthrough point for PVL research in the future. At the same time, it is necessary to further strengthen the research on its medicinal chemistry, mechanism of action and clinical application efficacy in the future, and strive to extract, purify and synthesize effective components with high efficiency and low toxicity, so as to improve the safety and rationality of clinical medication.

14.
PLoS Pathog ; 18(6): e1010588, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35709296

RESUMO

As intracellular parasites, viruses exploit cellular proteins at every stage of infection. Adenovirus outbreaks are associated with severe acute respiratory illnesses and conjunctivitis, with no specific antiviral therapy available. An adenoviral vaccine based on human adenovirus species D (HAdV-D) is currently in use for COVID-19. Herein, we investigate host interactions of HAdV-D type 37 (HAdV-D37) protein IIIa (pIIIa), identified by affinity purification and mass spectrometry (AP-MS) screens. We demonstrate that viral pIIIa interacts with ubiquitin-specific protease 9x (USP9x) and Ran-binding protein 2 (RANBP2). USP9x binding did not invoke its signature deubiquitination function but rather deregulated pIIIa-RANBP2 interactions. In USP9x-knockout cells, viral genome replication and viral protein expression increased compared to wild type cells, supporting a host-favored mechanism for USP9x. Conversely, RANBP2-knock down reduced pIIIa transport to the nucleus, viral genome replication, and viral protein expression. Also, RANBP2-siRNA pretreated cells appeared to contain fewer mature viral particles. Transmission electron microscopy of USP9x-siRNA pretreated, virus-infected cells revealed larger than typical paracrystalline viral arrays. RANBP2-siRNA pretreatment led to the accumulation of defective assembly products at an early maturation stage. CRM1 nuclear export blockade by leptomycin B led to the retention of pIIIa within cell nuclei and hindered pIIIa-RANBP2 interactions. In-vitro binding analyses indicated that USP9x and RANBP2 bind to C-terminus of pIIIa amino acids 386-563 and 386-510, respectively. Surface plasmon resonance testing showed direct pIIIa interaction with recombinant USP9x and RANBP2 proteins, without competition. Using an alternative and genetically disparate adenovirus type (HAdV-C5), we show that the demonstrated pIIIa interaction is also important for a severe respiratory pathogen. Together, our results suggest that pIIIa hijacks RANBP2 for nuclear import and subsequent virion assembly. USP9x counteracts this interaction and negatively regulates virion synthesis. This analysis extends the scope of known adenovirus-host interactions and has potential implications in designing new antiviral therapeutics.


Assuntos
Infecções por Adenoviridae , Adenovírus Humanos , COVID-19 , Transporte Ativo do Núcleo Celular , Adenoviridae/genética , Adenovírus Humanos/genética , Humanos , Chaperonas Moleculares , Complexo de Proteínas Formadoras de Poros Nucleares , RNA Interferente Pequeno , Ubiquitina Tiolesterase/genética , Proteases Específicas de Ubiquitina , Proteínas Virais/genética
15.
Stem Cell Res Ther ; 13(1): 248, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690801

RESUMO

BACKGROUND: In our previous study, activin B in combination with ADSCs enhances skin wound healing. However, the underlying molecular mechanisms are not well studied. Cdc42 is recognized to play a critical role in the regulation of stem cells. METHODS: Pull-down assay was performed to investigate the activity of Cdc42. The dominant-negative mutant of Cdc42 (Cdc42N17) was used to explore the role of Cdc42 in activin B-induced ADSCs migration, proliferation, and secretion in vitro. Cdc42N17-transfected ADSCs were injected into a full-thickness excisional wound model to explore their efficiency in wound healing in vivo. The wound healing efficacy was evaluated by the wound closure rates and histological examination. The neovascularization and wound contraction were detected by immunohistochemistry staining of CD31 and α-SMA. Finally, the underlying mechanisms were explored by RNA sequencing. RESULTS: Cdc42N17 inhibited ADSCs migration, proliferation, and secretion induced by activin B. Furthermore, Cdc42N17-transfected ADSCs inhibited the wound closure rate and suppressed the expression of CD31 and α-SMA induced by activin B in vivo. The RNA sequencing showed that the differentially expressed genes in Cdc42N17-transfected ADSCs versus ADSCs were associated with cell migration, proliferation, and adhesion. Further study revealed that the Cdc42-Erk-Srf pathway was required for activin B-induced proliferation in ADSCs. CONCLUSIONS: Our study indicates that Cdc42 plays a crucial role in ADSCs-mediated skin wound healing induced by activin B.


Assuntos
Células-Tronco Mesenquimais , Pele , Ativinas/metabolismo , Ativinas/farmacologia , Tecido Adiposo , Células-Tronco Mesenquimais/metabolismo , Pele/patologia , Cicatrização
16.
Contrast Media Mol Imaging ; 2022: 6572499, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685666

RESUMO

This study aimed to explore the effect of naltrexone on the expression of lipid metabolism-related proteins in liver steatosis induced by endoplasmic reticulum stress in mice. Thirty inbred mice (C57BL/6J) were divided into three groups: group A (normal control group), group B (model control), and group C (naltrexone group). The male mice in group A were fed a regular diet, and the mice in groups B and C were fed a high-fat diet. Liver steatosis was observed by histopathological sections. Mouse liver (alanine aminotransferase (ALT) and triglyceride (TC)) content (glucose regulatory protein (GRP78), endoplasmic reticulum transmembrane protein kinase-1α (IRE-1α), C/EBP source protein (CHOP), cysteine-containing aspartate proteolytic enzyme 12 (caspase-12), B lymphoma-2 (Bcl-2), and cell death mediator (Bim)) was detected. Compared with group A, bodyweight, fat weight, ALT, TG, and hepatic steatosis were significantly increased in B and C groups (P < 0.05); compared with group B, group C showed a significant decrease in bodyweight, fat weight, ALT, TG, and hepatic steatosis (P < 0.05). Compared with group A, the expression levels of GRP78, IRE-1α, CHOP, caspase-12, and Bim in liver tissue of groups B and C mice were increased. Bcl-2 decreased (P < 0.05). Compared with group B and group C after naltrexone intervention, the expression levels of GRP78, IRE-1α, CHOP, caspase-12, and Bim decreased significantly, and Bcl-2 increased significantly (P < 0.05). Naltrexone can effectively reduce bodyweight and adipose tissue accumulation, reduce liver fat lesions, improve the expression of lipid metabolism-related proteins and endoplasmic reticulum stress, reduce liver lipid synthesis, and protect liver cells.


Assuntos
Fígado Gorduroso , Metabolismo dos Lipídeos , Animais , Caspase 12 , Estresse do Retículo Endoplasmático , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naltrexona/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2
17.
Clin Transl Med ; 12(4): e546, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35474299

RESUMO

BACKGROUND: Ischemia-reperfusion injury (IRI) is considered an inherent component of organ transplantation that compromises transplant outcomes and organ availability. The ischemia-free liver transplantation (IFLT) procedure has been developed to avoid interruption of blood supply to liver grafts. It is unknown how IFLT might change the characteristics of graft IRI. METHODS: Serum and liver biopsy samples were collected from IFLT and conventional liver transplantation (CLT) recipients. Pathological, metabolomics, transcriptomics, and proteomics analyses were performed to identify the characteristic changes in graft IRI in IFLT. RESULTS: Peak aspartate aminotransferase (539.59 ± 661.76 U/L versus 2622.28 ± 3291.57 U/L) and alanine aminotransferase (297.64 ± 549.50 U/L versus 1184.16 ± 1502.76 U/L) levels within the first 7 days and total bilirubin levels by day 7 (3.27 ± 2.82 mg/dl versus 8.33 ± 8.76 mg/dl) were lower in the IFLT versus CLT group (all p values < 0.001). The pathological characteristics of IRI were more obvious in CLT grafts. The antioxidant pentose phosphate pathway remained active throughout the procedure in IFLT grafts and was suppressed during preservation and overactivated postrevascularization in CLT grafts. Gene transcriptional reprogramming was almost absent during IFLT but was profound during CLT. Proteomics analysis showed that "metabolism of RNA" was the major differentially expressed process between the two groups. Several proinflammatory pathways were not activated post-IFLT as they were post-CLT. The activities of natural killer cells, macrophages, and neutrophils were lower in IFLT grafts than in CLT grafts. The serum levels of 14 cytokines were increased in CLT versus IFLT recipients. CONCLUSIONS: IFLT can largely avoid the biological consequences of graft IRI, thus has the potential to improve transplant outcome while increasing organ utilization.


Assuntos
Transplante de Fígado , Traumatismo por Reperfusão , Alanina Transaminase , Humanos , Isquemia/patologia , Fígado/irrigação sanguínea , Fígado/metabolismo , Fígado/patologia , Transplante de Fígado/métodos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
18.
Cell Metab ; 34(4): 549-563.e8, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35298903

RESUMO

Asprosin is a fasting-induced glucogenic and centrally acting orexigenic hormone. The olfactory receptor Olfr734 is known to be the hepatic receptor for asprosin that mediates its effects on glucose production, but the receptor for asprosin's orexigenic function has been unclear. Here, we have identified protein tyrosine phosphatase receptor δ (Ptprd) as the orexigenic receptor for asprosin. Asprosin functions as a high-affinity Ptprd ligand in hypothalamic AgRP neurons, regulating the activity of this circuit in a cell-autonomous manner. Genetic ablation of Ptprd results in a strong loss of appetite, leanness, and an inability to respond to the orexigenic effects of asprosin. Ablation of Ptprd specifically in AgRP neurons causes resistance to diet-induced obesity. Introduction of the soluble Ptprd ligand-binding domain in the circulation of mice suppresses appetite and blood glucose levels by sequestering plasma asprosin. Identification of Ptprd as the orexigenic asprosin receptor creates a new avenue for the development of anti-obesity therapeutics.


Assuntos
Hormônios Peptídicos , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores , Proteína Relacionada com Agouti , Animais , Fibrilina-1/metabolismo , Glucose/metabolismo , Ligantes , Camundongos , Obesidade/metabolismo , Fragmentos de Peptídeos/metabolismo , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo
19.
J Nanobiotechnology ; 20(1): 111, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248056

RESUMO

BACKGROUND: Increasing interest in the hazardous properties of zinc oxide nanoparticles (ZnO NPs), commonly used as ultraviolet filters in sunscreen, has driven efforts to study the percutaneous application of ZnO NPs to diseased skin; however, in-depth studies of toxic effects on melanocytes under conditions of epidermal barrier dysfunction remain lacking. METHODS: Epidermal barrier dysfunction model mice were continuously exposed to a ZnO NP-containing suspension for 14 and 49 consecutive days in vivo. Melanoma-like change and molecular mechanisms were also verified in human epidermal melanocytes treated with 5.0 µg/ml ZnO NPs for 72 h in vitro. RESULTS: ZnO NP application for 14 and 49 consecutive days induced melanoma-like skin lesions, supported by pigmented appearance, markedly increased number of melanocytes in the epidermis and dermis, increased cells with irregular nuclei in the epidermis, recruited dendritic cells in the dermis and dysregulated expression of melanoma-associated gene Fkbp51, Trim63 and Tsp 1. ZnO NPs increased oxidative injury, inhibited apoptosis, and increased nuclear factor kappa B (NF-κB) p65 and Bcl-2 expression in melanocytes of skin with epidermal barrier dysfunction after continuously treated for 14 and 49 days. Exposure to 5.0 µg/ml ZnO NPs for 72 h increased cell viability, decreased apoptosis, and increased Fkbp51 expression in melanocytes, consistent with histological observations in vivo. The oxidative stress-mediated mechanism underlying the induction of anti-apoptotic effects was verified using the reactive oxygen species scavenger N-acetylcysteine. CONCLUSIONS: The entry of ZnO NPs into the stratum basale of skin with epidermal barrier dysfunction resulted in melanoma-like skin lesions and an anti-apoptotic effect induced by oxidative stress, activating the NF-κB pathway in melanocytes.


Assuntos
Melanoma , Nanopartículas , Óxido de Zinco , Animais , Apoptose , Epiderme/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Camundongos , NF-kappa B/metabolismo , Nanopartículas/toxicidade , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Óxido de Zinco/farmacologia
20.
J Hepatol ; 76(2): 407-419, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34656650

RESUMO

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. The advanced stage of NAFLD, non-alcoholic steatohepatitis (NASH), has been recognized as a leading cause of end-stage liver injury for which there are no FDA-approved therapeutic options. Glutathione S-transferase Mu 2 (GSTM2) is a phase II detoxification enzyme. However, the roles of GSTM2 in NASH have not been elucidated. METHODS: Multiple RNA-seq analyses were used to identify hepatic GSTM2 expression in NASH. In vitro and in vivo gain- or loss-of-function approaches were used to investigate the role and molecular mechanism of GSTM2 in NASH. RESULTS: We identified GSTM2 as a sensitive responder and effective suppressor of NASH progression. GSTM2 was significantly downregulated during NASH progression. Hepatocyte GSTM2 deficiency markedly aggravated insulin resistance, hepatic steatosis, inflammation and fibrosis induced by a high-fat diet and a high-fat/high-cholesterol diet. Mechanistically, GSTM2 sustained MAPK pathway signaling by directly interacting with apoptosis signal-regulating kinase 1 (ASK1). GSTM2 directly bound to the N-terminal region of ASK1 and inhibited ASK1 N-terminal dimerization to subsequently repress ASK1 phosphorylation and the activation of its downstream JNK/p38 signaling pathway under conditions of metabolic dysfunction. CONCLUSIONS: These data demonstrated that hepatocyte GSTM2 is an endogenous suppressor that protects against NASH progression by blocking ASK1 N-terminal dimerization and phosphorylation. Activating GSTM2 holds promise as a therapeutic strategy for NASH. CLINICAL TRIAL NUMBER: IIT-2021-277. LAY SUMMARY: New therapeutic strategies for non-alcoholic steatohepatitis are urgently needed. We identified that the protein GSTM2 exerts a protective effect in response to metabolic stress. Therapies that aim to increase the activity of GSTM2 could hold promise for the treatment of non-alcoholic steatohepatitis.


Assuntos
Glutationa Transferase/farmacologia , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Animais , Biópsia/métodos , Biópsia/estatística & dados numéricos , Modelos Animais de Doenças , Marcação de Genes/métodos , Marcação de Genes/normas , Marcação de Genes/estatística & dados numéricos , Glutationa Transferase/metabolismo , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Fígado/patologia , MAP Quinase Quinase Quinase 5/uso terapêutico , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA