Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 174-183, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273784

RESUMO

The most frequent primary brain tumor in adults is glioma, yet no effective curative treatments are currently available. Our previous study demonstrated the enhancing effects of JARID2 on glioma sensitivity to TMZ treatment. In this study, miR-155 is predicted to target JARID2. miR-155 is overexpressed in clinical glioma specimens and cell lines. miR-155 overexpression in glioma cells enhances cell viability and represses cell apoptosis. Through targeting, miR-155 inhibits JARID2 expression. miR-155 inhibition inhibits glioma cell viability and enhances cell apoptosis, whereas JARID2 knockdown enhances cell viability and inhibits cell apoptosis; JARID2 knockdown partially reverses miR-155 inhibition effects on glioma phenotypes. miR-155 inhibition reduces but knockdown of JARID2 promotes the tumor formation ability of glioma cells in vivo. Valproic acid (VPA) upregulates JARID2 expression, inhibits glioma cell viability and enhances cell apoptosis. VPA downregulates the expression level of miR-155 by increasing the methylation level of the miR-155 promoter, suggesting that the miR-155/JARID2 axis is implicated in VPA inhibition of glioma cell viability and enhancement of glioma cell apoptosis. This study demonstrates a new mechanism of VPA treatment of gliomas by affecting the miR-155/JARID2 axis, which could be regarded as a new strategy for the prevention and treatment of glioma.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , Humanos , Ácido Valproico/farmacologia , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , MicroRNAs/metabolismo , Metilação , Proliferação de Células/genética , Apoptose/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica
2.
Front Mol Biosci ; 9: 961481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172047

RESUMO

Background: Crohn's disease (CD) is a multifactorial inflammatory bowel disease characterized by complex aberrant autoimmune disorders. Currently, the involvement of the circadian rhythm in the pathogenesis of CD is unknown. Methods: Bulk and single-cell RNA-seq data and associated clinical data from patients with CD were downloaded from the Gene Expression Omnibus (GEO). Single-sample gene set enrichment analysis was performed to calculate the enrichment score (ES) of circadian rhythm-related genes. Differential expression analysis was used to identify differentially expressed genes. Functional enrichment analysis was used to explore potential disease mechanisms. CIBERSORT was used to estimate immune cell abundance. Single-cell RNA-seq data were analyzed using the R package "Seurat." Results: The ES of circadian rhythm-related genes was lower in the CD tissue than in the normal tissue. Ubiquitin-specific protease 2 (USP2), a circadian rhythm-related gene, was identified as a potential modulator of CD pathogenesis. USP2 expression was reduced in CD and was associated with disease severity. Moreover, the analysis of bulk RNA-seq and single-cell RNA-seq data showed that monocyte and neutrophil abundance was elevated in CD and was negatively correlated with USP2 expression. It should be noted that USP2 expression in acinar cells was negatively correlated with monocyte and neutrophil abundance. Functional enrichment analysis revealed several canonical pathways to be enriched in CD, including the interleukin-17 signaling pathway, tumor necrosis factor signaling pathway, cytokine-cytokine receptor interaction, toll-like receptor signaling pathway, and nod-like receptor signaling pathway. Conclusion: Aberrant expression of circadian rhythm-related genes is correlated with CD pathogenesis. USP2 might be related to crosstalk among the different cell types in CD. These findings provide insights into future chronotherapy for CD.

3.
Cancer Manag Res ; 14: 1729-1740, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592108

RESUMO

Background: Long non-coding RNA LINC01232 plays an important role in the progression of metastasis in several cancers. However, the function of LINC01232 in gastric cancer is limited. Authors aimed to investigate the role and mechanism of LINC01232 in the metastasis of gastric cancer. Methods: The expression levels and correlation of LINC01232, miR-506-5p, and PAK1 were analyzed by GEPIA or ENCORI, and the abundance of LINC01232 and miR-506-5p was measured in tissues and cells via qRT-PCR, the location of LINC01232 in gastric cells was analyzed by nuclear and cytoplasmic fractionation, while the protein levels of PAK1, E-cadherin and vimentin were additionally quantified by Western blotting. Interactions between LINC01232, miR-506-5p, and PAK1 were detected through luciferase reporter assays, qRT-PCR and Western blotting. Cellular viability was evaluated through CCK8 assays, migration ability was measured by transwell assays, invasion ability was tested by wound healing experiment. Results: LINC01232 was overexpressed in gastric cancer tissues and cells, and mainly located in nucleus. The inhibition of LINC01232 could suppress migration, invasion and EMT of gastric cancer cells. MiR-506-5p was downregulated in gastric cancer tissues and cells. LINC01232 sponged miR-506-5p to accelerate migration and EMT. PAK1 was certified to be a target of miR-506-5p, inhibition of PAK1 could interrupt LINC01232 overexpression-induced migration of gastric cancer cells. Conclusion: The LINC01232/miR-506-5p/PAK1 axis promotes metastasis of gastric cancer cells.

4.
Cancer Biol Ther ; 22(5-6): 392-403, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34251962

RESUMO

A maximal surgical resection followed by radiotherapy and chemotherapy with temozolomide (TMZ) as the representative agent is the standard therapy for gliomas. However, tumor cell resistance to radiotherapy and chemotherapy leads to poor prognosis and high mortality in patients with glioma. In the present study, we demonstrated that JARID2 was downregulated and CCND1 was upregulated within glioma tissues of different grades and glioma cells. In tissue samples, JARID2 was negatively correlated with CCND1. JARID2 overexpression significantly inhibited glioma cell viability, promoted glioma cell apoptosis upon TMZ treatment, and increased p21, cleaved-PARP, and cleaved-caspase3 in TMZ-treated glioma cells. JASPAR tool predicted the possible binding sites between JARID2 and CCND1 promoter regions; through direct binding to CCND1 promoter region, JARID2 negatively regulated CCND1 expression. Under TMZ treatment, JARID2 overexpression inhibited CCND1 expression, promoted glioma cell apoptosis, and increased p21, cleaved-PARP, and cleaved-caspase3 in glioma cells treated with TMZ; meanwhile, CCND1 overexpression exerted opposite effects on glioma cells treated with TMZ and partially reversed the effects of JARID2 overexpression. In conclusion, JARID2 targets and inhibits CCND1. The JARID2/CCND1 axis modulates glioma cell growth and glioma cell sensitivity to TMZ.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , Linhagem Celular Tumoral , Ciclina D1/genética , Resistencia a Medicamentos Antineoplásicos , Glioma/tratamento farmacológico , Humanos , Complexo Repressor Polycomb 2 , Temozolomida/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA