Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Arch Oral Biol ; 169: 106091, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270423

RESUMO

OBJECTIVES: This study aimed to investigate the effects of cathepsin K (catK) on proteoglycans (PGs) and the subsequent impacts on dentin collagen degradation. MATERIALS AND METHODS: Demineralized dentin samples were prepared and divided into the following groups: deionized water (DW), 0.1 U/mL chondroitinase ABC (C-ABC), and 1 µM odanacatib (ODN). Then, they were immersed for 48 h and then incubated in 1 mL of PBS (pH=5.5) at 37 °C for 5 d. Glycosaminoglycan (GAG) were examined to explore the degradation of PGs by catK. To determine the effect of catK-mediated PGs on dentin collagen degradation, hydroxyproline (HYP) assays, assessment of the degree of dentin crosslinking, and scanning electron microscopy (SEM) were assessed. Statistical analysis was conducted using one-way ANOVA followed by Tukey's tests or Welch's ANOVA followed by Dunnett's tests at a significance level of 0.05. RESULTS: The production of GAG was significantly lower in the ODN group than in the DW group (P < 0.05), revealing that PG degradation was reduced in dentin after ODN treatment. Additionally, ODN treatment minimized the gaps in collagen fibers, improved fiber arrangement, and significantly increased the degree of collagen crosslinking, subsequently reducing the total amount of collagen fiber degradation in the dentin (P < 0.05). CONCLUSIONS: CatK-mediated degradation of PGs negatively impacted the stability of collagen fibers, promoted gaps, led to a less organized arrangement of dentin collagen fibers, ultimately increasing collagen degradation.

2.
J Virol ; 98(4): e0177323, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38530012

RESUMO

Dengue vaccine candidates have been shown to improve vaccine safety and efficacy by altering the residues or accessibility of the fusion loop on the virus envelope protein domain II (DIIFL) in an ex vivo animal study. The current study aimed to comprehensively investigate the impact of DIIFL mutations on the antigenicity, immunogenicity, and protective efficacy of Japanese encephalitis virus (JEV) virus-like particles (VLPs) in mice. We found the DIIFL G106K/L107D (KD) and W101G/G106K/L107D (GKD) mutations altered the binding activity of JEV VLP to cross-reactive monoclonal antibodies but had no effect on their ability to elicit total IgG antibodies in mice. However, JEV VLPs with KD or GKD mutations induced significantly less neutralizing antibodies against JEV. Only 46% and 31% of the KD and GKD VLPs-immunized mice survived compared to 100% of the wild-type (WT) VLP-immunized mice after a lethal JEV challenge. In passive protection experiments, naïve mice that received sera from WT VLP-immunized mice exhibited a significantly higher survival rate of 46.7% compared to those receiving sera from KD VLP- and GKD VLP-immunized mice (6.7% and 0%, respectively). This study demonstrated that JEV DIIFL is crucial for eliciting potently neutralizing antibodies and protective immunity against JEV. IMPORTANCE: Introduction of mutations into the fusion loop is one potential strategy for generating safe dengue and Zika vaccines by reducing the risk of severe dengue following subsequent infections, and for constructing live-attenuated vaccine candidates against newly emerging Japanese encephalitis virus (JEV) or Japanese encephalitis (JE) serocomplex virus. The monoclonal antibody studies indicated the fusion loop of JE serocomplex viruses primarily comprised non-neutralizing epitopes. However, the present study demonstrates that the JEV fusion loop plays a critical role in eliciting protective immunity in mice. Modifications to the fusion loop of JE serocomplex viruses might negatively affect vaccine efficacy compared to dengue and zika serocomplex viruses. Further studies are required to assess the impact of mutant fusion loop encoded by commonly used JEV vaccine strains on vaccine efficacy or safety after subsequent dengue virus infection.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Vacinas contra Encefalite Japonesa , Animais , Camundongos , Aminoácidos , Anticorpos Neutralizantes , Anticorpos Antivirais , Dengue , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/imunologia , Encefalite Japonesa/prevenção & controle , Epitopos , Vacinas contra Encefalite Japonesa/genética , Proteínas do Envelope Viral/genética , Zika virus , Infecção por Zika virus
3.
Front Vet Sci ; 11: 1346922, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38528870

RESUMO

Introduction: This trial was conducted to compare the effect of diets supplemented with plant essential oil (PEO) and coated plant essential oil (CEO) on growth performance, immunity, antioxidant activity, and fecal microbiota of weaned piglets. Methods: A total of 360 21-day-old weaned piglets were randomly allocated into three groups, namely, CON, PEO, and CEO (basal diets supplemented with 0, 500 mg/kg PEO, and 500 mg/kg CEO, respectively) for a 4-week feeding trial. Results and discussion: The results showed that dietary supplementation with CEO improved the average final weight and average daily gain, decreased the diarrhea rate, increased antioxidant enzyme activities, enhanced immunoglobulin concentrations, and decreased concentrations of pro-inflammatory cytokines in the serum of weaned piglets (p < 0.05). In addition, CEO addition increased the fecal concentrations of propionic acid and isovaleric acid of piglets (p < 0.05). Spearman correlation analysis showed that fecal microorganisms at the genus level were closely correlated with the volatile fatty acid concentrations. The present study indicated that PEO and CEO could improve growth performance, enhance immunity, and increase antioxidant capacity by modulating the microbial flora in weaned piglets. Moreover, CEO addition seemed to offer more positive results than of PEO addition.

4.
Int J Mol Med ; 53(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063240

RESUMO

Macrophages, as highly heterogeneous and plastic immune cells, occupy a pivotal role in both pro­inflammatory (M1) and anti­inflammatory (M2) responses. While M1­type macrophages secrete pro­inflammatory factors to initiate and sustain inflammation, M2­type macrophages promote inflammation regression and uphold tissue homeostasis. These distinct phenotypic transitions in macrophages are closely linked to significant alterations in cellular metabolism, encompassing key response pathways such as glycolysis, pentose phosphate pathway, oxidative phosphorylation, lipid metabolism, amino acid metabolism, the tricarboxylic acid cycle and iron metabolism. These metabolic adaptations enable macrophages to adapt their activities in response to varying disease microenvironments. Therefore, the present review focused primarily on elucidating the intricate metabolic pathways that underlie macrophage functionality. Subsequently, it offers a comprehensive overview of the current state­of­the­art nanomaterials, highlighting their promising potential in modulating macrophage metabolism to effectively hinder disease progression in both cancer and atherosclerosis.


Assuntos
Aterosclerose , Neoplasias , Humanos , Macrófagos/metabolismo , Aterosclerose/metabolismo , Ciclo do Ácido Cítrico , Inflamação/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Ativação de Macrófagos , Microambiente Tumoral
5.
Clin Oral Investig ; 28(1): 1, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38114764

RESUMO

OBJECTIVES: This study aimed to assess the activity, distribution, and colocalization of cathepsin K (catK) and matrix metalloproteases (MMPs) in both intact and eroded dentin in vitro. MATERIALS AND METHODS: Eroded dentin was obtained by consecutive treatment with 5% citric acid (pH = 2.3) for 7 days, while intact dentin remained untreated. Pulverized dentin powder (1.0 g) was extracted from both intact and eroded dentin using 5 mL of 50 mM Tris-HCl buffer (0.2 g/1 mL, pH = 7.4) for 60 h to measure the activity of catK and MMPs spectrofluorometrically. In addition, three 200-µm-thick dentin slices were prepared from intact and eroded dentin for double-labeling immunofluorescence to evaluate the distribution and colocalization of catK and MMPs (MMP-2 and MMP-9). The distribution and colocalization of enzymes were analyzed using inverted confocal laser scanning microscopy (CLSM), with colocalization rates quantified using Leica Application Suite Advanced Fluorescent (LAS AF) software. One-way analysis of variance (ANOVA) was used to analyze the fluorescence data related to enzyme activity (α = 0.05). RESULTS: The activity of catK and MMPs was significantly increased in eroded dentin compared with intact dentin. After erosive attacks, catK, MMP-2, and MMP-9 were prominently localized in the eroded regions. The colocalization rates of catK with MMP-2 and MMP-9 were 13- and 26-fold higher in eroded dentin, respectively, than in intact dentin. CONCLUSIONS: Erosive attacks amplified the activity of catK and MMPs in dentin while also altering their distribution patterns. Colocalization between catK and MMPs increased following erosive attacks. CLINICAL RELEVANCE: CatK, MMP-2, and MMP-9 likely play synergistic roles in the pathophysiology of dentin erosion.


Assuntos
Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Catepsina K , Imunofluorescência , Dentina
6.
Adv Sci (Weinh) ; 10(33): e2203987, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37849233

RESUMO

Albeit the majority of eukaryotic genomes can be pervasively transcribed to a diverse population of lncRNAs and various subtypes of lncRNA are discovered. However, the genome-wide study of miRNA-derived lncRNAs is still lacking. Here, it is reported that over 800 miRNA gene-originated lncRNAs (molncRNAs) are generated from miRNA loci. One of them, molnc-301b from miR-301b and miR-130b, functions as an "RNA decoy" to facilitate dissociation of the chromatin remodeling protein SMARCA5 from chromatin and thereby sequester transcription and mRNA translation. Specifically, molnc-301b attenuates erythropoiesis by mitigating the transcription of erythropoietic and translation-associated genes, such as GATA1 and FOS. In addition, a useful and powerful CRISPR screen platform to characterize the biological functions of molncRNAs at large-scale and single-cell levels is established and 29 functional molncRNAs in hematopoietic cells are identified. Collectively, the focus is on miRNA-derived lncRNAs, deciphering their landscape during normal hematopoiesis, and comprehensively evaluating their potential roles.


Assuntos
MicroRNAs , RNA Longo não Codificante , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Estudo de Associação Genômica Ampla , Fatores de Transcrição/genética
7.
Aging (Albany NY) ; 15(18): 9858-9876, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37751592

RESUMO

The development, incidence, and metastasis of tumors are all intimately correlated with 5-methylcytosine (m5C). However, uncertainty surrounds the function of m5C in acute myeloid leukemia (AML). In this study, multicenter AML data were collected and analyzed comprehensively to grasp the gene expression level, clinicopathological characteristics, prognostic significance of m5C in AML and its relationship with the tumor microenvironment (TME). The m5C gene-mediated scoring system (m5CSS) was created using principal component analysis, and multiple cox regression analyses were utilized to determine the prognostic relevance of the m5C score. The investigation of the correlation among m5C, immune characteristics, clinical characteristics, immune infiltration level, as well as drug reaction at immune checkpoints, and immunotherapy efficacy confirmed that the change of the characteristics of immune cell infiltration and patient prognosis are linked with the m5C gene. Moreover, the m5CSS was employed to assess the pattern of m5C modification. Further analyses showed that the m5C score can served as a reliable indicator of AML prognosis. Crucially, the prognostic value of the m5C score was validated in terms of drug resistance and immunotherapy. This work reveals that AML diversity and the generation of complex TMEs are both impacted by m5C modifications. Therefore, understanding the m5C modification pattern will improve grasp of TME infiltration characteristics and assist exploring more efficient immunotherapeutic approaches.


Assuntos
Leucemia Mieloide Aguda , Humanos , Metilação , Prognóstico , Leucemia Mieloide Aguda/genética , 5-Metilcitosina , Imunoterapia , Microambiente Tumoral/genética
8.
Int J Neurosci ; 133(9): 1055-1063, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35635805

RESUMO

BACKGROUND: There are few studies on the comorbidity of hypertension (HTN), diabetes mellitus (DM) and dyslipidemia (DLP) associated with stroke. We aimed to explore the relationship between the number of metabolic diseases and stroke and its different subtypes, and to reveal whether metabolic diseases alone or coexist can significantly increase the risk of stroke. METHODS: We completed a multi-center case-control study in Jiangxi Province, China. Neuroimaging examination was done in all cases. Controls were stroke-free adults recruited from the community in the case concentration area and matched with the cases in 1:1 ratio by age and sex. Odds ratios (OR) were calculated by conditional logistic regression. RESULTS: We enrolled 11,729 case-control pairs. The estimated ORs among patients with 1, 2 and 3 metabolic diseases were 3.16 (2.78-3.60), 7.11 (6.16-8.20), 12.22 (9.73-15.36), respectively after adjusting age, body mass index, urban-rural areas, cardiac disease, smoking, alcohol intake, physically active, high intake of salt, meat-biased diet, high homocysteine. The coexistence of HTN and DM (OR: 7.67), the coexistence of HTN and DLP (OR:7.58), and the coexistence of DM and DLP (OR:3.64) can all significantly increase the risk of stroke. HTN alone or combined other metabolic diseases were significantly more strongly associated with intracerebral haemorrhage than ischemic stroke. CONCLUSIONS: The risk of stroke increased with the number of chronic metabolic diseases. It is necessary to regularly monitor blood pressure, blood sugar and blood lipids and strengthen lifestyle management and take appropriate drug interventions to prevent exposure to multiple metabolic diseases based on existing conditions.


Assuntos
Diabetes Mellitus , Hipertensão , Doenças Metabólicas , Acidente Vascular Cerebral , Adulto , Humanos , Fatores de Risco , Estudos de Casos e Controles , Comorbidade , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/complicações , Hipertensão/epidemiologia , Hipertensão/complicações , Diabetes Mellitus/epidemiologia , Doenças Metabólicas/epidemiologia , Doenças Metabólicas/complicações , China/epidemiologia
9.
J. appl. oral sci ; J. appl. oral sci;31: e20220449, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1440407

RESUMO

Abstract Objectives To evaluate the effects of matrix metalloproteinase (MMP) and cathepsin K (catK) inhibitors on resistance to dentin erosion. Methodology A total of 96 dentin specimens (3×3×2 mm) were prepared and randomly assigned into four groups (n=24): deionized water (DW); 1 µM odanacatib (ODN, catK inhibitor); 1 mM 1,10-phenanthroline (PHEN, MMP inhibitor); and 1 µM odanacatib + 1 mM 1,10-phenanthroline (COM). Each group was further divided into two subgroups for the application of treatment solutions before (PRE) and after erosive challenges (POST). All specimens were subjected to four daily erosive challenges for 5 d. For each erosive challenge, the specimens in subgroup PRE were immersed in the respective solutions before cola drinks, while the specimens in subgroup POST were immersed in the respective solutions after cola drinks (the immersion duration was 5 min in both cases). All specimens were stored in artificial saliva at 37°C between erosive challenges. The erosive dentin loss (EDL) was measured by profilometry. The residual demineralized organic matrix (DOM) of specimens was removed using type VII collagenase and evaluated by profilometry. Both the EDL and thickness of the residual DOM were statistically analyzed by two-way analysis of variance (ANOVA) and Bonferroni's test (α=0.05). The surface topography and transverse sections of the specimens were observed using SEM. MMPs and catK were immunolabeled in the eroded dentin and in situ zymography was performed to evaluate the enzyme activity. Results Significantly lower EDL was found in the groups ODN, PHEN, and COM than in the control group (all p<0.05), while no significant difference in EDL was found among the groups ODN, PHEN, and COM (all p>0.05). The application sequence showed no significant effect on the EDL of the tested groups (p=0.310). A significantly thicker DOM was observed in the group ODN than in the control group regardless of the application sequence (both p<0.05). The treatment with ODN, PHEN, and COM inhibited the gelatinolytic activity by approximately 46.32%, 58.6%, and 74.56%, respectively. Conclusions The inhibition of endogenous dentinal MMPs and catK increases the acid resistance of human dentin but without an apparent synergistic effect. The inhibition of MMPs and catK is equally effective either before or after the acid challenge.

10.
Nat Cell Biol ; 24(8): 1278-1290, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35927451

RESUMO

METTL3 encodes the predominant catalytic enzyme to promote m6A methylation in nucleus. Recently, accumulating evidence has shown the expression of METTL3 in cytoplasm, but its function is not fully understood. Here we demonstrated an m6A-independent mechanism for METTL3 to promote tumour progression. In gastric cancer, METTL3 could not only facilitate cancer progression via m6A modification, but also bind to numerous non-m6A-modified mRNAs, suggesting an unexpected role of METTL3. Mechanistically, cytoplasm-anchored METTL3 interacted with PABPC1 to stabilize its association with cap-binding complex eIF4F, which preferentially promoted the translation of epigenetic factors without m6A modification. Clinical investigation showed that cytoplasmic distributed METTL3 was highly correlated with gastric cancer progression, and this finding could be expanded to prostate cancer. Therefore, the cytoplasmic METTL3 enhances the translation of epigenetic mRNAs, thus serving as an oncogenic driver in cancer progression, and METTL3 subcellular distribution can assist diagnosis and predict prognosis for patients with cancer.


Assuntos
Metiltransferases , Neoplasias Gástricas , Adenosina/metabolismo , Carcinogênese/genética , Epigênese Genética , Humanos , Masculino , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias Gástricas/genética
11.
Food Nutr Res ; 662022.
Artigo em Inglês | MEDLINE | ID: mdl-35903291

RESUMO

Background: Inflammatory liver diseases present a significant public health problem. Probiotics are a kind of living microorganisms, which can improve the balance of host intestinal flora, promote the proliferation of intestinal beneficial bacteria, inhibit the growth of harmful bacteria, improve immunity, reduce blood lipids and so on. Probiotics in fermented foods have attracted considerable attention lately as treatment options for liver injury. Objective: The aim of this study was selected probiotic strain with well probiotic properties from naturally fermented foods and investigated the underlying mechanisms of screened probiotic strain on lipopolysaccharide (LPS)-induced liver injury, which provided the theoretical foundation for the development of probiotics functional food. Design: The probiotic characteristics of Lactobacillus plantarum Lp2 isolated from Chinese traditional fermented food were evaluated. Male KM mice were randomly assigned into three groups: normal chow (Control), LPS and LPS with L. plantarum Lp2. L. plantarum Lp2 were orally administered for 4 weeks before exposure to LPS. The liver injury of LPS-induced mice was observed through the evaluation of biochemical indexes, protein expression level and liver histopathology. Results and discussions: After treatment for 4 weeks, L. plantarum Lp2 administration significantly reduced the LPS-induced liver coefficient and the levels of serum or liver aspartate transaminase (AST), alanine aminotransferase (ALT), tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and LPS, as well as decreasing the histological alterations and protein compared with the LPS group. Western-blotting results showed that L. plantarum Lp2 activated the signal pathway of TLR4/MAPK/NFκB/NRF2-HO-1/CYP2E1/Caspase-3 and regulated the expression of related proteins. Conclusions: In summary, L. plantarum Lp2 suppressed the LPS-induced activation of inflammatory pathways, oxidative injury and apoptosis has the potential to be used to improve liver injury.

12.
Bioorg Chem ; 121: 105675, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182882

RESUMO

Fms-like tyrosine kinase 3 (FLT3) is considered a promising therapeutic target for acute myeloid leukemia (AML) in the clinical. However, monotherapy with FLT3 inhibitor is usually accompanied by drug resistance. Dual inhibitors might be therapeutically beneficial to patients with AML due to their ability to overcome drug resistance. Mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) phosphorylate eukaryotic translation initiation factor 4E (eIF4E), which brings together the RAS/RAF/ERK and PI3K/AKT/mTOR oncogenic pathways. Therefore, dual inhibition of FLT3 and MNK2 might have an additive effect against AML. Herein, a structure-based virtual screening approach was performed to identify dual inhibitors of FLT3 and MNK2 from the ChemDiv database. Compound K783-0308 was identified as a dual inhibitor of FLT3 and MNK2 with IC50 values of 680 and 406 nM, respectively. In addition, the compound showed selectivity for both FLT3 and MNK2 in a panel of 82 kinases. The structure-activity relationship analysis and common interactions revealed interactions between K783-0308 analogs and FLT3 and MNK2. Furthermore, K783-0308 inhibited MV-4-11 and MOLM-13 AML cell growth and induced G0/G1 cell cycle arrest. Taken together, the dual inhibitor K783-0308 showed promising results and can be potentially optimized as a lead compound for AML treatment.


Assuntos
Leucemia Mieloide Aguda , Tirosina Quinase 3 Semelhante a fms , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Fosfatidilinositol 3-Quinases , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases
13.
Artigo em Inglês | MEDLINE | ID: mdl-35010774

RESUMO

There is interest in whether nicotine could enhance attention in sporting performance, but evidence on the acute effect of nicotine on physical response and sports performance in baseball players remains scant. This was an observational study to examine whether nicotine gum chewed before exercise could provide acute effects on physiological responses and sport performance. Accordingly, heart rate variability (HRV), saliva cotinine concentration and α-amylase activity, cognitive function, muscle strength, and baseball-hitting performance were measured. Thirteen healthy male non-smoker baseball players were recruited. Conducting two sequences with 7-day intervals, they chewed nicotine gum (nicotine group) or flavor-matched placebo gum (placebo group) for 30 min. HRV and saliva analyses were conducted before gum consumption (S1), after gum consumption (S2), and after test completion (S3). Cognitive, muscle strength, and baseball-hitting performance tests were performed after nicotine or placebo gum chewing. The outcomes of all assessed variables were compared within and between the groups. Significant changes in HRV, α-amylase, testosterone, and cortisol were observed in the nicotine group at S2 and S3 (p < 0.05). Compared with the placebo group, the nicotine group exhibited enhanced motor reaction times, grooved pegboard test (GPT) results on cognitive function, and baseball-hitting performance, and small effect sizes were noted (d = 0.47, 0.46 and 0.41, respectively). Nicotine could induce changes in endocrine and sympathetic nerve activity and enhance cognitive function and baseball-hitting performance. However, no increase in muscle strength was observed after nicotine intake.


Assuntos
Desempenho Atlético , Beisebol , Atenção , Goma de Mascar , Humanos , Masculino , Nicotina
14.
Front Med (Lausanne) ; 8: 713824, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646841

RESUMO

Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were shown to have potential for immunoregulation and tissue repair. The objective of this study was to investigate the effects of hUC-MSCs on emphysema in chronic obstructive pulmonary disease (COPD). The C57BL/6JNarl mice were exposed to cigarette smoke (CS) for 4 months followed by administration of hUC-MSCs at 3 × 106 (low dose), 1 × 107 (medium dose), and 3 × 107 cells/kg body weight (high dose). The hUC-MSCs caused significant decreases in emphysema severity by measuring the mean linear intercept (MLI) and destructive index (DI). A decrease in neutrophils (%) and an increase in lymphocytes (%) in bronchoalveolar lavage fluid (BALF) were observed in emphysematous mice after hUC-MSC treatment. Lung levels of interleukin (IL)-1ß, C-X-C motif chemokine ligand 1 (CXCL1)/keratinocyte chemoattractant (KC), and matrix metalloproteinase (MMP)-12 significantly decreased after hUC-MSC administration. Significant reductions in tumor necrosis factor (TNF)-α, IL-1ß, and IL-17A in serum occurred after hUC-MSC administration. Notably, the cell viability of lung fibroblasts improved with hUC-MSCs after being treated with CS extract (CSE). Furthermore, the hUC-MSCs-conditioned medium (hUC-MSCs-CM) restored the contractile force, and increased messenger RNA expressions of elastin and fibronectin by lung fibroblasts. In conclusion, hUC-MSCs reduced inflammatory responses and emphysema severity in CS-induced emphysematous mice.

15.
Cell Death Dis ; 12(5): 499, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33993197

RESUMO

Long noncoding RNAs (lncRNAs) show emerging roles in colorectal cancer (CRC) development and are considered to be involved in the potential mechanism of tumor malignancy. While Sox2 overlapping transcript (SOX2OT) has been implicated in the progression of multiple cancers, its role in CRC remains to be explored. In this study, in situ hybridization (ISH) and qRT-PCR were performed to establish the functional relationships between SOX2OT and CRC deranged in CRC tissue and cells. Subsequently, SOX2OT shRNAs vectors were transfected into CRC cells to performed loss-of-function assays to detect the potential role of SOX2OT on proliferation and metastasis in vitro and vivo. The results showed SOX2OT was an oncogene that was up-regulated in human CRC tissues and cell lines. SOX2OT silencing suppressed cell proliferation, migration, and invasion in CRC cells in vitro, and inhibited tumorigenesis in the mouse xenografts. Bioinformatic predictive analysis coupled with the dual-luciferase reporter, RNA immunoprecipitation (RIP), and functional rescue assay elucidated the mechanistic network of the SOX2OT-miR-194-5p-SOX5 axis in CRC. Mechanistically, SOX2OT acted as a competing endogenous RNA (ceRNA) to upregulate SOX5 by sponging miR-194-5p. Downregulated SOX2OT boosted miR-194-5p expression, thus decreased the protein level of SOX5, which suppresses tumorgenesis of CRC.


Assuntos
Neoplasias Colorretais/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Fatores de Transcrição SOXD/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Nus , Transfecção
16.
Biomed Pharmacother ; 138: 111485, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33740521

RESUMO

Aberrant alteration of epigenetic information disturbs chromatin structure and gene function, thereby facilitating cancer development. Several drugs targeting histone deacetylases (HDACs), a group of epigenetic enzymes, have been approved for treating hematologic malignancies in the clinic. However, patients who suffer from solid tumors often respond poorly to these drugs. In this study, we report a selective entinostat derivative, MPT0L184, with potent cancer-killing activity in both cell-based and mouse xenograft models. A time-course analysis of cell-cycle progression revealed that MPT0L184 treatment elicited an early onset of mitosis but prevented the division of cells with duplicated chromosomes. We show that MPT0L184 possessed potent inhibitory activity toward HDAC1 and 2, and its HDAC-inhibitory activity was required for initiating premature mitotic signaling. HDAC inhibition by MPT0L184 reduced WEE1 expression at the transcription level. In addition, MPT0L184 treatment also downregulated ATR-mediated CHK1 phosphorylation independent of HDAC inhibition. Furthermore, gastric cancer cells resistant to HDAC inhibitors were vulnerable to MPT0L184. Taken together, our study discovers MPT0L184 as a novel HDAC inhibitor that can trigger premature mitosis and potentially counteract drug resistance of cancers.


Assuntos
Benzamidas/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Benzamidas/química , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Inibidores de Histona Desacetilases/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitose/efeitos dos fármacos , Mitose/fisiologia , Piridinas/química , Transdução de Sinais/fisiologia , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
17.
J Int Soc Sports Nutr ; 18(1): 16, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602279

RESUMO

BACKGROUND: Nicotine is beneficial to mood, arousal and cognition in humans. Due to the importance of cognitive functioning for archery athletes, we investigated the effects of nicotine supplementation on the cognitive abilities, heart rate variability (HRV), and sport performance of professional archers. METHODS: Eleven college archers were recruited and given 2 mg of nicotine supplementation (NIC group) and placebo (PLA group) in a crossover design. RESULTS: The results showed that at 30 min after the intake of nicotine gum, the "correct rejection" time in the NIC group was significantly lower than that of the PLA group (7.29 ± 0.87 vs. 8.23 ± 0.98 msec, p < 0.05). In addition, the NIC group completed the grooved pegboard test in a shorter time than the PLA group (48.76 ± 3.18 vs. 53.41 ± 4.05 s, p < 0.05), whereas motor reaction times were not different between the two groups. Saliva α-amylase activity was significantly lower after nicotine supplementation (p < 0.01) but increased immediately after the archery test in the NIC group (p < 0.05). In addition, nicotine supplementation significantly decreased HRV and increased the archery score (290.58 ± 10.09 vs. 298.05 ± 8.56, p < 0.01). CONCLUSIONS: Nicotine enhances the performance of archery athletes by increasing cognitive function and stimulating the sympathetic adrenergic system.


Assuntos
Atletas , Desempenho Atlético , Cognição/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Estudos Cross-Over , Humanos , Masculino , Nicotina/administração & dosagem , Goma de Mascar de Nicotina , Agonistas Nicotínicos/administração & dosagem , Placebos/administração & dosagem , Placebos/farmacologia , Tempo de Reação/efeitos dos fármacos , alfa-Amilases Salivares/análise , alfa-Amilases Salivares/efeitos dos fármacos , Taiwan , Fatores de Tempo
18.
Cancer Sci ; 112(2): 604-618, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33090636

RESUMO

Glioblastoma (GBM) recurrence is attributed to the presence of therapy-resistant glioblastoma stem cells. Steroid receptor coactivator-1 (SRC-1) acts as an oncogenic regulator in many human tumors. The relationship between SRC-1 and GBM has not yet been studied. Herein, we investigate the role of SRC-1 in GBM. In this study, we found that SRC-1 expression is positively correlated with grades of glioma and inversely correlated with glioma patient's prognosis. Steroid receptor coactivator-1 promotes the proliferation, migration, and tumor growth of GBM cells. Notably, SRC-1 knockdown suppresses the stemness of GBM cells. Mechanistically, long noncoding RNA X-inactive specific transcript (XIST) is regulated by SRC-1 at the posttranscriptional level and mediates the function of SRC-1 in promoting stemness-like properties of GBM. Steroid receptor coactivator-1 can promote the expression of Kruppel-like factor 4 (KLF4) through the XIST/microRNA (miR)-152 axis. Additionally, arenobufagin and bufalin, SRC small molecule inhibitors, can reduce the proliferation and stemness of GBM cells. This study reveals SRC-1 promotes the stemness of GBM by activating the long noncoding RNA XIST/miR-152/KLF4 pathway and provides novel markers for diagnosis and therapy of GBM.


Assuntos
Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioblastoma/patologia , Coativador 1 de Receptor Nuclear/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferação de Células/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Xenoenxertos , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia
19.
Cancer Res ; 81(10): 2651-2665, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32788173

RESUMO

N6-methyladenosine (m6A) is the most prevalent internal RNA modification in mammals that regulates homeostasis and function of modified RNA transcripts. Here, we aimed to investigate the role of YTH m6A RNA-binding protein 1 (YTHDF1), a key regulator of m6A methylation in gastric cancer tumorigenesis. Multiple bioinformatic analyses of different human cancer databases identified key m6A-associated genetic mutations that regulated gastric tumorigenesis. YTHDF1 was mutated in about 7% of patients with gastric cancer, and high expression of YTHDF1 was associated with more aggressive tumor progression and poor overall survival. Inhibition of YTHDF1 attenuated gastric cancer cell proliferation and tumorigenesis in vitro and in vivo. Mechanistically, YTHDF1 promoted the translation of a key Wnt receptor frizzled7 (FZD7) in an m6A-dependent manner, and mutated YTHDF1 enhanced expression of FZD7, leading to hyperactivation of the Wnt/ß-catenin pathway and promotion of gastric carcinogenesis. Our results demonstrate the oncogenic role of YTHDF1 and its m6A-mediated regulation of Wnt/ß-catenin signaling in gastric cancer, providing a novel approach of targeting such epigenetic regulators in this disease. SIGNIFICANCE: This study provides a rationale for controlling translation of key oncogenic drivers in cancer by manipulating epigenetic regulators, representing a novel and efficient strategy for anticancer treatment. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/10/2651/F1.large.jpg.


Assuntos
Carcinogênese/patologia , Metilação de DNA , Receptores Frizzled/metabolismo , Regulação Neoplásica da Expressão Gênica , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Neoplasias Gástricas/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Proliferação de Células , Receptores Frizzled/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Proteínas de Ligação a RNA/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética , beta Catenina/metabolismo
20.
Front Physiol ; 11: 962, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903481

RESUMO

Cigarette smoke (CS) has been reported to induce oxidative stress and inflammatory process in the lungs. However, the role of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in the regulation of pulmonary inflammation remains unclear. The objective of this study is to investigate the effects of hUC-MSCs on lung inflammation in the acute CS-induced pulmonary inflammation animal model. Eight-week-old male C57BL/6 mice were intravenously administered 3 × 106, 1 × 107, and 3 × 107 cells/kg of hUC-MSCs as well as normal saline alone (control) after 3 days of CS exposure. Mice exposed to high-efficiency particulate air (HEPA)-filtered room air served as the CS control group. High-dose (3 × 107 cells/kg) hUC-MSC administration significantly decreased tumor necrosis factor (TNF)-α in the bronchoalveolar lavage fluid (BALF) of CS-exposed mice (p < 0.05). The chemokine (CXC motif) ligand 1/keratinocyte chemoattractant (CXCL1/KC) in BALF were significantly reduced by low-dose (3 × 106 cells/kg) and high-dose (3 × 107 cells/kg) hUC-MSC (p < 0.05). Medium-dose hUC-MSC administration decreased interleukin (IL)-1ß in lung of mice, and TNF-α and caspase-3 were decreased in the lung of CS-exposed mice by medium- and high-dose MSC (p < 0.05). Low-dose hUC-MSCs significantly elevated serum CXCL1/KC and IL-1ß in CS-exposed mice (p < 0.05). Our results suggest that high-dose hUC-MSCs reduced pulmonary inflammation and had antiapoptotic effects in acute pulmonary inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA