Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
MedComm (2020) ; 5(9): e723, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39263604

RESUMO

Krüppel-like factors (KLFs) are a family of basic transcription factors with three conserved Cys2/His2 zinc finger domains located in their C-terminal regions. It is acknowledged that KLFs exert complicated effects on cell proliferation, differentiation, survival, and responses to stimuli. Dysregulation of KLFs is associated with a range of diseases including cardiovascular disorders, metabolic diseases, autoimmune conditions, cancer, and neurodegenerative diseases. Their multidimensional roles in modulating critical pathways underscore the significance in both physiological and pathological contexts. Recent research also emphasizes their crucial involvement and complex interplay in the skeletal system. Despite the substantial progress in understanding KLFs and their roles in various cellular processes, several research gaps remain. Here, we elucidated the multifaceted capabilities of KLFs on body health and diseases via various compliable signaling pathways. The associations between KLFs and cellular energy metabolism and epigenetic modification during bone reconstruction have also been summarized. This review helps us better understand the coupling effects and their pivotal functions in multiple systems and detailed mechanisms of bone remodeling and develop potential therapeutic strategies for the clinical treatment of pathological diseases by targeting the KLF family.

2.
BMC Pulm Med ; 24(1): 329, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982416

RESUMO

BACKGROUND: The incidence of pneumothorax is higher in patients with emphysema who undergo percutaneous lung biopsy. Needle embolization has been shown to reduce the incidence of pneumothorax in patients with emphysema. Existing studies have reported small sample sizes of patients with emphysema, or the degree of emphysema has not been graded. Therefore, the efficacy of biopsy embolization in the prevention of pneumothorax induced by percutaneous pulmonary biopsy in patients with emphysema remains to be determined. METHODS: In this retrospective, controlled study, patients with emphysema who underwent CT-guided PTLB were divided into two groups: group A (n = 523), without tract embolization, and Group B (n = 504), with tract embolization. Clinical and imaging features were collected from electronic medical records and Picture Archiving and Communication Systems. Univariate and multivariate analyses were performed to identify risk factors for pneumothorax and chest tube placement. RESULTS: The two groups did not differ significantly in terms of demographic characteristics and complications other than pneumothorax. The incidence of pneumothorax and chest tube placement in group B was significantly lower than in group A (20.36% vs. 46.12%, p < 0.001; 3.95% vs. 9.18%, p < 0.001, respectively). In logistic regression analyses, variables affecting the incidence of pneumothorax and chest tube placement were the length of puncture of the lung parenchyma (odds ratio [OR] = 1.18, 95% confidence interval [CI]: 1.07-1.30, p = 0.001; OR = 1.55, 95% CI: 1.30-1.85, p < 0.001, respectively), tract embolization (OR = 0.31, 95% CI: 0.24-0.41, p < 0.001; OR = 0.39, 95% CI: 0.22-0.69, p = 0.001, respectively), and grade of emphysema. CONCLUSIONS: Tract embolization with gelatin sponge particles after CT-guided PTLB significantly reduced the incidence of pneumothorax and chest tube placement in patients with emphysema. Tract embolization, length of puncture of the lung parenchyma, and grade of emphysema were independent risk factors for pneumothorax and chest tube placement. TRIAL REGISTRATION: Retrospectively registered.


Assuntos
Embolização Terapêutica , Biópsia Guiada por Imagem , Pulmão , Pneumotórax , Enfisema Pulmonar , Tomografia Computadorizada por Raios X , Humanos , Pneumotórax/etiologia , Pneumotórax/prevenção & controle , Pneumotórax/epidemiologia , Feminino , Masculino , Estudos Retrospectivos , Idoso , Pessoa de Meia-Idade , Biópsia Guiada por Imagem/efeitos adversos , Biópsia Guiada por Imagem/métodos , Embolização Terapêutica/métodos , Pulmão/patologia , Pulmão/diagnóstico por imagem , Fatores de Risco , Modelos Logísticos , Tubos Torácicos , Esponja de Gelatina Absorvível/administração & dosagem , Incidência , Análise Multivariada , Idoso de 80 Anos ou mais , Radiografia Intervencionista/métodos
3.
Front Pharmacol ; 15: 1327149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444939

RESUMO

Background: Hepatitis B virus associated-glomerulonephritis (HBV-GN) is one of the major secondary renal diseases in China, and microRNAs (miRNAs) in bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exo) can attenuate HBV-X protein (HBx)-induced ferroptosis in renal podocytes, but the exact mechanism remains unclear. This study aimed to investigate the protective mechanism of miR-223-3p in BMSC-Exo in HBx-induced ferroptosis in podocytes. Methods: The study employed human renal podocyte cells (HPCs), bone marrow-derived mesenchymal stem cells (BMSCs), as well as kidney tissue from C57BL/6 mice and HBx transgenic mice. Initially, the correlation between STAT3 phosphorylation and ferroptosis was authenticated through the administration of signal transducer and activator of transcription 3 (STAT3) phosphorylation inhibitors in both in vivo and in vitro settings. Furthermore, the effect of HDAC2 overexpression on STAT3 phosphorylation was examined. Subsequently, the association between BMSC-Exo carrying miR-223-3p, HDAC2, and the phosphorylation of STAT3 in HPCs ferroptosis and injury induced by HBx was assessed. The interaction between miR-223-3p and HDAC2 was confirmed via RNA immunoprecipitation assay. Various techniques such as cell counting kit-8 assay, western blot, RT-qPCR, immunofluorescence, flow cytometry, lipid peroxidation assay kit, iron assay kit, transmission electron microscopy, and hematoxylin-eosin staining were employed to visualize the extent of HBx-induced podocyte injury and ferroptosis in both in vivo and in vitro. Results: The attenuation of podocyte ferroptosis can be achieved by inhibiting the phosphorylation of STAT3 in podocytes induced by HBx. Conversely, the upregulation of HDAC2 can enhance STAT3 phosphorylation, thereby promoting podocyte ferroptosis. MiR-223-3p was capable of directly exerting negative regulation on HDAC2 expression. BMSC-Exo carrying miR-223-3p can effectively suppress the expression of HDAC2, ultimately leading to reduce HBx-induced ferroptosis in podocytes by targeting HDAC2 with miR-223-3p and downregulating STAT3 phosphorylation. Conclusion: This study evidences the potential of BMSC-Exo mediated delivery of miR-223-3p in mitigating HBx-induced ferroptosis in podocytes, thereby offering a novel therapeutic target and approach for treating HBV-GN and alleviating renal injury.

4.
Phytomedicine ; 118: 154924, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393829

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a heterogeneous carcinoma characterized by the most aggressive phenotype among all breast cancer subtypes. However, therapeutic options for TNBC patients have limited clinical efficacy due to lack of specific target and efficient targeted therapeutics. AIM: To investigate the biological characteristics of a novel estrogen receptor (ER)-α splice variant ER-α30 in breast cancer cells, and its possible role in the anticancer effects of calycosin, a typical phytoestrogen derived from the herbal plant Astragalus membranaceus, against TNBC. This may also provide a better understanding of the inhibitory activity of calycosin on TNBC progression. METHODS: Breast cancer tissues and para-cancer tissues were collected and analyzed for the expression levels of ER-α30 using immunohistochemistry (IHC), and its expression in two TNBC cell lines (MDA-MB-231 and BT-549) was detected by western blot and qRT-PCR assays. Then the alteration of cell viability, apoptosis, migration, invasion and epithelial-mesenchymal transition (EMT) in response to overexpression or knockdown of ER-α30 was separately determined by CCK-8, Hoechst 33258, wound healing, transwell and western blot assays in two TNBC cell lines. Next, the anticancer effects of calycosin on MDA-MB-231 cells were evaluated through CCK-8, colony formation, flow cytometry, Hoechst 33258 and western blot assays, along with the role of ER-α30 in these effects and the possible downstream targets of ER-α30. In addition, the in vivo experiments were carried out using MDA-MB-231 xenograft model intraperitoneally treated with calycosin. The volume and weight of xenograft tumor were measured to evaluate the in vivo anticancer activities of calycosin, while the corresponding changes of ER-α30 expression in tumor tissues were detected by IHC. RESULTS: It was demonstrated that the novel ER-α splice variant ER-α30 was primarily distributed in the nucleus of TNBC cells. Compared with normal breast tissues, ER-α30 expression was found in significantly higher levels in breast cancer tissues of ER- and progesterone receptor (PR)-negative subtype, so did in TNBC cell lines (MDA-MB-231 and BT-549) when compared to normal breast cell line MCF10A. Moreover, ER-α30 overexpression strikingly enhanced cell viability, migration, invasion and EMT progression and reduced apoptosis in TNBC cells, whereas shRNA-mediated knockdown of ER-α30 revealed the opposite results. Notably, calycosin suppressed the expression of ER-α30 in a dose-dependent manner, accompanied with the inhibition of TNBC growth and metastasis. A similar finding was observed for the xenografts generated from MDA-MB-231 cells. The treatment with calycosin suppressed the tumor growth and decreased ER-α30 expression in tumor tissues. Furthermore, this inhibition by calycosin was more pronounced in ER-α30 knockdown cells. Meanwhile, we found a positive relationship between ER-α30 and the activity of PI3K and AKT, which could also be inactivated by calycosin treatment. CONCLUSION: For the first time, it is demonstrated that the novel estrogen receptor-α splice variant ER-α30 could function as pro-tumorigenic factor in the context of TNBC by participating in cell proliferation, apoptosis, invasion and metastasis, thus it may serve as a potential therapeutic target for TNBC therapy. Calycosin could reduce the activation of ER-α30-mediated PI3K/AKT pathway, thereby inhibited TNBC development and progression, suggesting that calycosin may be a potential therapeutic option for TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Estrogênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regulação para Baixo , Bisbenzimidazol/farmacologia , Sincalida/genética , Sincalida/metabolismo , Sincalida/farmacologia , Linhagem Celular Tumoral , Transdução de Sinais , Proliferação de Células , Movimento Celular
5.
PeerJ ; 11: e15314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37193022

RESUMO

Introduction: Hepatitis B virus-associated glomerulonephritis (HBV-GN) is a common secondary kidney disease in China, the pathogenesis of which is not completely clear, and there is still a lack of effective treatment. Methods: The mechanism of exosomes derived from bone marrow mesenchymal stem cells (BMSCs) was investigated by using HBx-transfected human renal podocytes. Cell viability was detected by CCK8 assay. Iron and malondialdehyde (MDA) contents were detected by using commercial kits. Reactive oxygen species (ROS) levels were measured by flow cytometry analysis. The expression of ferroptosis related molecules was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. The effect of miR-223-3p transferred by BMSC-derived exosomes on HBx-overexpressing podocytes was proved by using miR-223-3p inhibitor. Results: The cell viability of podocytes reduced at 72 h or 96 h after the transfection of lentivirus overexpressing HBx protein (p < 0.05). Ferroptosis-related proteins, including glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) were down-regulated upon HBx overexpression, while acyl-CoA synthetase long-chain family member 4 (ACSL4) was up-regulated (p < 0.05). Intracellular levels of iron, MDA, and ROS were also enhanced (p < 0.05). BMSC-derived exosomes protected against ferroptosis induced by HBx overexpression in podocytes. miR-223-3p was enriched in BMSC-derived exosomes. Application of miR-223-3p inhibitor reversed the protective effect of BMSC-derived exosomes on HBx-induced ferroptosis in podocytes. Conclusion: BMSC-derived exosomes inhibit HBx-induced podocyte ferroptosis by transferring miR-223-3p.


Assuntos
Exossomos , Ferroptose , Células-Tronco Mesenquimais , MicroRNAs , Podócitos , Humanos , MicroRNAs/genética , Podócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo
6.
J Nanobiotechnology ; 21(1): 125, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041523

RESUMO

Osteoporosis (OP) is a metabolic bone disease characterized by decreased bone mass and increased bone fragility. The imbalance of bone homeostasis modulated by osteoclasts and osteoblasts is the most crucial pathological change in osteoporosis. As a novel treatment strategy, nanomedicine has been applied in drug delivery and targeted therapy due to its high efficiency, precision, and fewer side effects. Gold nanospheres (GNS), as a common kind of gold nanoparticles (GNPs), possess significant antimicrobial and anti-inflammatory activity, which have been applied for the treatment of eye diseases and rheumatoid arthritis. However, the effect of GNS on osteoporosis remains elusive. In this study, we found that GNS significantly prevented ovariectomy (OVX)-induced osteoporosis in a gut microbiota-dependent manner. 16S rDNA gene sequencing demonstrated GNS markedly altered the gut microbial diversity and flora composition. In addition, GNS reduced the abundance of TMAO-related metabolites in OVX mice. Low TMAO levels might alleviate the bone loss phenomenon by reducing the inflammation response. Therefore, we investigated the alteration of cytokine profiles in OVX mice. GNS inhibited the release of pro-osteoclastogenic or proinflammatory cytokines including tumor necrosis factor α (TNF-α), interleukin (IL)-6, and granulocyte colony-stimulating factor (G-CSF) in the serum. In conclusion, GNS suppressed estrogen deficiency-induced bone loss by regulating the destroyed homeostasis of gut microbiota so as to reduce its relevant TMAO metabolism and restrain the release of proinflammatory cytokines. These results demonstrated the protective effects of GNS on osteoporosis as a gut microbiota modulator and offered novel insights into the regulation of the "gut-bone" axis.


Assuntos
Microbioma Gastrointestinal , Nanopartículas Metálicas , Nanosferas , Osteoporose , Feminino , Camundongos , Animais , Ouro/farmacologia , Citocinas , Interleucina-6
7.
BMC Pediatr ; 22(1): 517, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050749

RESUMO

BACKGROUND: Xp21 contiguous gene deletion syndrome is a rare genetic metabolic disorder with poor prognosis in infants, involving deletions of one or more genes in Xp21. When deletions of adrenal hypoplasia (AHC), Duchenne muscular dystrophy (DMD), and chronic granulomatosis (CGD) loci are included, complex glycerol kinase deficiency (CGKD) can be diagnosed. We present a case of CGKD that was initially misdiagnosed and died during treatment in our hospital in terms of improving our understanding of the clinical features and diagnosis of this disease, as well as highlighting the need for more precise dosing of corticosteroid replacement therapy. CASE PRESENTATION: A 48-day-old full-term male infant was transferred to our medical center with global growth delay and persistent vomiting. Routine laboratory tests revealed hyperkalemia, hyponatremia, and a high level of creatine kinase. The initial diagnosis was adrenal cortical hyperplasia (ACH), then revised to adrenocortical insufficiency with a normal level of ACTH detected. After supplementing the routine lipid test and urinary glycerol test, CGKD was diagnosed clinically due to positive triglyceridemia and urinary glycerol, and the follow-up gene screening further confirmed the diagnosis. The boy kept thriving after corticosteroid replacement and salt supplementation. While levels of serum ACTH and cortisol decreased and remained low after corticosteroid replacement was administered. The patient died of acute type 2 respiratory failure and hypoglycemia after an acute upper respiratory tract infection, which may be the result of adrenal crisis after infection. Infants with CGKD have a poor prognosis, so physicians should administer regular follow-ups, and parents counseling during treatment to improve the survival of patients. CONCLUSIONS: Overall, CGKD, although rare, cannot be easily excluded in children with persistent vomiting. Extensive blood tests can help to detect abnormal indicators. Adrenal crisis needs to be avoided as much as possible during corticosteroid replacement therapy.


Assuntos
Insuficiência Adrenal , Glicerol Quinase , Insuficiência Adrenal/diagnóstico , Insuficiência Adrenal/genética , Hormônio Adrenocorticotrópico , Criança , China , Diagnóstico Tardio , Glicerol , Glicerol Quinase/genética , Humanos , Hipoadrenocorticismo Familiar , Lactente , Masculino , Vômito
8.
Ageing Res Rev ; 79: 101641, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35569786

RESUMO

Methylation is the most common posttranscriptional modification in cellular RNAs, which has been reported to modulate the alteration of RNA structure for initiating relevant functions such as nuclear translocation and RNA degradation. Recent studies found that RNA methylation especially N6-methyladenosine (m6A) regulates the dynamic balance of bone matrix and forms a complicated network in bone metabolism. The modulation disorder of RNA methylation contributes to several pathological bone diseases including osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), and so on. In the review, we will discuss advanced technologies for detecting RNA methylation, summarize RNA methylation-related biological impacts on regulating bone homeostasis and pathological bone diseases. In addition, we focus on the promising roles of RNA methylation in early diagnosis and therapeutic implications for bone-related diseases. Then, we aim to establish a theoretical basis for further investigation in this meaningful field.


Assuntos
Adenosina , Doenças Ósseas , Adenosina/genética , Adenosina/metabolismo , Humanos , Metilação , RNA/genética , RNA/metabolismo
9.
Cell Mol Life Sci ; 78(23): 7161-7183, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34635950

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells (IMCs) with immunosuppressive functions, whereas IMCs originally differentiate into granulocytes, macrophages, and dendritic cells (DCs) to participate in innate immunity under steady-state conditions. At present, difficulties remain in identifying MDSCs due to lacking of specific biomarkers. To make identification of MDSCs accurately, it also needs to be determined whether having immunosuppressive functions. MDSCs play crucial roles in anti-tumor, angiogenesis, and metastasis. Meanwhile, MDSCs could make close interaction with osteoclasts, osteoblasts, chondrocytes, and other stromal cells within microenvironment of bone and joint, and thereby contributing to poor prognosis of bone-related diseases such as cancer-related bone metastasis, osteosarcoma (OS), rheumatoid arthritis (RA), osteoarthritis (OA), and orthopedic trauma. In addition, MDSCs have been shown to participate in the procedure of bone repair. In this review, we have summarized the function of MDSCs in cancer-related bone metastasis, the interaction with stromal cells within the bone microenvironment as well as joint microenvironment, and the critical role of MDSCs in bone repair. Besides, the promising value of MDSCs in the treatment for bone-related diseases is also well discussed.


Assuntos
Neoplasias Ósseas/patologia , Regeneração Óssea/fisiologia , Tolerância Imunológica/imunologia , Células Supressoras Mieloides/citologia , Artrite Reumatoide/patologia , Doenças Ósseas/patologia , Neoplasias Ósseas/secundário , Microambiente Celular/fisiologia , Células Dendríticas/citologia , Granulócitos/citologia , Humanos , Imunidade Inata/imunologia , Macrófagos/citologia , Células Supressoras Mieloides/imunologia , Osteoartrite/patologia
10.
Bioact Mater ; 6(12): 4697-4706, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34095626

RESUMO

Antiresorptive drugs are widely used for treatment of osteoporosis and cancer bone metastasis, which function mainly through an overall inhibition of osteoclast. However, not all osteoclasts are "bone eaters"; preosteoclasts (pOCs) play anabolic roles in bone formation and angiogenesis through coupling with osteoblasts and secreting platelet derived growth factor-BB (PDGF-BB). In this study, a bone-targeted pH-responsive nanomaterial was designed for selectively eliminating mature osteoclasts (mOCs) without affecting pOCs. Biocompatible cerium nano-system (CNS) was guided to the acidic extracellular microenvironment created by mOCs and gained oxidative enzymatic activity. Oxidative CNS decreased the viability of mOCs through accumulating intracellular reactive oxygen species and enhancing calcium oscillation. Non-acid secreting anabolic pOCs were thus preserved and kept producing PDGF-BB, which lead to mesenchymal stem cell osteogenesis and endothelial progenitor cell angiogenesis via PI3K-Akt activated focal adhesion kinase. In treating osteoporotic ovariectomized mice, CNS showed better protective effects compare with the current first line antiresorptive drug due to the better anabolic effects marked by higher level of bone formation and vascularization. We provided a novel anabolic therapeutic strategy in treating bone disorders with excessive bone resorption.

11.
Mol Clin Oncol ; 14(6): 128, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33981432

RESUMO

The N6-methyladenosine (m6A) modification is the most common mRNA modification in eukaryotes and exerts biological functions by affecting RNA metabolism. The m6A modification is installed by m6A methyltransferases, removed by demethylases and recognized by m6A-binding proteins. The interaction between these three elements maintains the dynamic equilibrium of m6A in cells. Accumulating evidence indicates that m6A RNA methylation has a significant impact on RNA metabolism and is involved in the pathogenesis of cancer. Lung cancer is the leading cause of cancer-related deaths worldwide. The treatment options for lung cancer have developed considerably over the past few years; however, the survival rate of patients with lung cancer still remains very low. Although diagnostic methods and targeted therapies have been rapidly developed in recent years, the underlying mechanism and importance of m6A RNA methylation in the pathogenesis of lung cancer remains ambiguous. The current review summarized the biological functions of m6A modification and considers the potential roles of m6A regulators in the occurrence and development of lung cancer.

12.
Acta Biomater ; 126: 183-198, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33711525

RESUMO

Selective cell retention (SCR) has been widely used as a bone tissue engineering technique for the real-time fabrication of bone grafts. The greater the number of mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) retained in the scaffold, the better the osteoinductive and angiogenic properties of the scaffold's microenvironment. Improved bioscaffold properties in turn lead to improved bone graft survival, bone regeneration, and angiogenesis. Laminin plays a key role in cell-matrix adhesion, cell proliferation, and differentiation. We designed a collagen-binding domain (CBD) containing the core functional amino acid sequences of laminin α4 (CBD-LN peptide) to supplement the functional surface of a collagen-based decalcified bone matrix (DBM) scaffold. This scaffold promoted MSCs and EPCs early cell adhesion through up-regulating the expression of integrin α5ß1 and integrin αvß3 respectively, thus accelerated the following cell spreading, proliferation, and differentiation. Interestingly, it promoted the retention of MSCs (CD90+/CD105+ cells) and EPCs (CD31+ cells) in the scaffold following the use of clinical SCR technology. Furthermore, the DBM/CBD-LN scaffold induced the formation of type H vessels through the activation of the HIF-1α signaling pathway. The DBM/CBD-LN scaffold displayed rapid bone formation and angiogenesis in vivo, suggesting that it might be used as a new biomaterial in bone tissue engineering. STATEMENT OF SIGNIFICANCE: Selective cell retention technology (SCR) has been utilized in clinical settings to manufacture bioactive bone grafts. Specifically, demineralized bone matrix (DBM) is a widely-used SCR clinical biomaterial but it displays poor adhesion performance and angiogenic activity. In this work, we designed a collagen-binding domain (CBD) containing the core functional amino acid sequences of laminin α4 to supplement the functional surface of a collagen-based DBM scaffold. This bioscaffold promoted SCR-mediated MSCs and EPCs early cell adhesion, thus accelerated the following cell spreading, proliferation, and differentiation. Our results indicate this bioscaffold greatly induced osteogenesis and angiogenesis in vivo. In general, this bioscaffold has a good prospect for SCR application and may provide highly bioactive bone implant in clinical environment.


Assuntos
Regeneração Óssea , Adesão Celular , Laminina , Alicerces Teciduais , Diferenciação Celular , Células Progenitoras Endoteliais , Humanos , Células-Tronco Mesenquimais , Osteogênese , Engenharia Tecidual
13.
Immunol Res ; 69(1): 8-17, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33483937

RESUMO

Calpains are a family of nonlysosomal cysteine proteases, which play important roles in numerous physiological and pathological processes. Locations of them dictates the functions so that they are classified as ubiquitously expressed calpains and tissue-specific calpains. Recent studies are mainly focused on conventional calpains (calpain-1,2) in development and diseases, and increasing people pay attention to other subtypes of calpains but may not been summarized appropriately. Growing evidence suggests that calpains are also involved in immune regulation. However, seldom articles review the regulation of calpains on immune cells. The aim of this article is to review the research progress of each calpain isozyme and the effect of calpains on immune cells, especially the promotion effect of calpains on the immune response of macrophage, neutrophils, dendritic cells, mast cells, natural killed cells, and lymphocytes. These effects would hold great promise for the clinical application of calpains as a practicable therapeutic option in the treatment of immune related diseases.


Assuntos
Calpaína/metabolismo , Doenças do Sistema Imunitário/metabolismo , Imunoterapia/métodos , Isoenzimas/metabolismo , Animais , Calpaína/imunologia , Humanos , Doenças do Sistema Imunitário/terapia , Imunidade Celular , Imunomodulação , Isoenzimas/imunologia , Especificidade de Órgãos
14.
Clin Transl Med ; 10(8): e240, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33377656

RESUMO

BACKGROUND: Inflammatory osteolysis is a severe infectious bone disorder that occurs during orthopaedic surgery and is caused by disruptions in the dynamic balance of bone matrix homeostasis, which makes this condition a burden on surgical procedures. Developing novel therapeutic drugs about inhibiting excessive osteoclastogenesis acts as an efficient approach to preventing inflammatory bone destruction. METHODS: To study this, we explored the potential effects and mechanisms of compound 17 on inflammatory osteolysis in vitro. Meanwhile, a lipopolysaccharide (LPS)-induced calvarial osteolysis mouse model was used to evaluate the protective effect of compound 17 on inflammatory bone destruction in vivo. RESULTS: In our study, we found that compound 17 could inhibit osteoclast (OC) differentiation and bone resorption during RANKL and LPS stimulation in a time- and dose-dependent manner, while compounds 5 and 13 did not have the same effects. Mechanistically, compound 17 promoted phosphatase and tensin homologue (PTEN) activity by reducing PTEN ubiquitination, thereby restraining the RANKL-induced NF-κB pathway, resulting in the inhibition of the expression of osteoclastogenesis-related genes and the formation of the NLRP3 inflammasome. Additionally, we also investigated whether compound 17 could negatively modulate macrophage polarization and repolarization due to its anti-inflammatory effects. Moreover, compound 17 also plays an important role in osteoblast differentiation and mineralization. In vivo experiments showed that compound 17 could effectively protect mice from LPS-induced inflammatory bone destruction by inhibiting osteoclastogenesis and inflammation. CONCLUSIONS: Taken together, these results show that compound 17 might play protective role in inflammatory bone destruction through inhibiting osteoclastogenesis and inflammation. These findings imply a possible role of compound 17 in inflammatory osteolysis-related diseases.

15.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 34(12): 1594-1601, 2020 Dec 15.
Artigo em Chinês | MEDLINE | ID: mdl-33319542

RESUMO

OBJECTIVE: Based on the cell-extracellular matrix adhesion theory in selective cell retention (SCR) technology, demineralized bone matrix (DBM) modified by simplified polypeptide surface was designed to promote both bone regeneration and angiogenesis. METHODS: Functional peptide of α4 chains of laminin protein (LNα4), cyclic RGDfK (cRGD), and collagen-binding domain (CBD) peptides were selected. CBD-LNα4-cRGD peptide was synthesized in solid phase and modified on DBM to construct DBM/CBD-LNα4-cRGD scaffold (DBM/LN). Firstly, scanning electron microscope and laser scanning confocal microscope were used to examine the characteristics and stability of the modified scaffold. Then, the adhesion, proliferation, and tube formation properties of CBD-LNα4-cRGD peptide on endothelial progenitor cells (EPCs) were detected, respectively. Western blot method was used to verify the molecular mechanism affecting EPCs. Finally, 24 10-week-old male C57 mice were used to establish a 2-mm-length defect of femoral bone model. DBM/LN and DBM scaffolds after SCR treatment were used to repair bone defects in DBM/LN group ( n=12) and DBM group ( n=12), respectively. At 8 weeks after operation, the angiogenesis and bone regeneration ability of DBM/LN scaffolds were evaluated by X-ray film, Micro-CT, angiography, histology, and immunofluorescence staining [CD31, endomucin (Emcn), Ki67]. RESULTS: Material related tests showed that the surface of DBM/LN scaffold was rougher than DBM scaffold, but the pore diameter did not change significantly ( t=0.218, P=0.835). After SCR treatment, DBM/LN scaffold was still stable and effective. Compared with DBM scaffold, DBM/LN scaffold could adhere to more EPCs after the surface modification of CBD-LNα4-cRGD ( P<0.05), and the proliferation rate and tube formation ability increased. Western blot analysis showed that the relative expressions of VEGF, phosphorylated FAK (p-FAK), and phosphorylated ERK1/2 (p-ERK1/2) proteins were higher in DBM/LN than in DBM ( P<0.05). In the femoral bone defect model of mice, it was found that mice implanted with DBM/LN scaffold had stronger angiogenesis and bone regeneration capacity ( P<0.05), and the number of CD31 hiEmcn hi cells increased significantly ( P<0.05). CONCLUSION: DBM/LN scaffold can promote the adhesion of EPCs. Importantly, it can significantly promote the generation of H-type vessels and realize the effective coupling between angiogenesis and bone regeneration in bone defect repair.


Assuntos
Matriz Óssea , Osteogênese , Animais , Regeneração Óssea , Laminina , Masculino , Camundongos , Peptídeos , Alicerces Teciduais
16.
Exp Cell Res ; 395(2): 112238, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32822724

RESUMO

Human class I homeobox A13 (HOXA13) was initially identified as a transcription factor and has an important role in embryonic development and malignant transformation. However, the clinical significance and the molecular mechanisms of HOXA13 in colon cancer development and progression are still unknown. In this study, we found that HOXA13 was highly expressed in colon cancer tissues, and its expression was associated with histological grade, T stage, N stage and tumour size. In vitro studies showed that HOXA13 promoted colon cancer cell proliferation, migration and invasion. Bioinformatics analysis revealed that HOXA13 expression was positively correlated with the WNT signalling pathway. In vitro studies showed that HOXA13 promoted the malignant phenotype of colon cancer cells by facilitating the nuclear translocation of ß-Catenin. Moreover, XAV939, an inhibitor of ß-Catenin, reversed the HOXA13-mediated effects on invasion and proliferation of colon cancer cells. In vivo studies further verified that HOXA13 promoted tumour formation through the Wnt/ß-Catenin pathway. Collectively, these results suggest that HOXA13 is a potential oncogene that functions by promoting the nuclear translocation of ß-Catenin, thereby maintaining the proliferation and metastasis of colon cancer.


Assuntos
Neoplasias do Colo/metabolismo , Proteínas de Homeodomínio/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Colo/metabolismo , Neoplasias do Colo/patologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos
17.
Aging (Albany NY) ; 12(12): 11698-11716, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527985

RESUMO

Inflammatory osteolysis is a common osteolytic specificity that occurs during infectious orthopaedic surgery and is characterized by an imbalance in bone homeostasis due to excessive osteoclast bone resorption activity. Epothilone B (Epo B) induced α-tubulin polymerization and enhanced microtubule stability, which also played an essential role in anti-inflammatory effect on the regulation of many diseases. However, its effects on skeletal system have rarely been investigated. Our study demonstrated that Epo B inhibited osteoclastogenesis in vitro and prevented inflammatory osteolysis in vivo. Further analysis showed that Epo B also markedly induced mature osteoclasts apoptosis during osteoclastogenesis. Mechanistically, Epo B directly suppressed osteoclastogenesis by the inhibitory regulation of the phosphorylation and activation of PI3K/Akt/STAT3 signaling directly, and the suppressive regulation of the CD9/gp130/STAT3 signaling pathway indirectly. The negative regulatory effect on STAT3 signaling further restrained the translocation of NF-κB p65 and NFATc1 from the cytosol to the nuclei during RANKL stimulation. Additionally, the expression of osteoclast specific genes was also significantly attenuated during osteoclast fusion and differentiation. Taken together, these findings illustrated that Epo B protected against LPS-induced bone destruction through inhibiting osteoclastogenesis via regulating the STAT3 dependent signaling pathway.


Assuntos
Epotilonas/farmacologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteólise/prevenção & controle , Fator de Transcrição STAT3/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Modelos Animais de Doenças , Epotilonas/uso terapêutico , Feminino , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Fêmur/imunologia , Fêmur/patologia , Humanos , Lipopolissacarídeos/imunologia , Camundongos , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Osteoclastos/fisiologia , Osteogênese/imunologia , Osteólise/diagnóstico , Osteólise/imunologia , Osteólise/patologia , Cultura Primária de Células , Ligante RANK/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Fator de Transcrição RelA/metabolismo , Microtomografia por Raio-X
18.
Cell Death Dis ; 11(6): 414, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488049

RESUMO

Bone infection contributing to inflammatory osteolysis is common in orthopedic surgery. The dynamic balance between bone formation and bone resorption is destroyed due to excessive osteoclast fusion and differentiation, which results in severe bone matrix loss. Many therapeutic approaches that restrain osteoclast formation and function act as efficient ways to prevent inflammatory bone erosion. We have demonstrated for the first time that dendritic cells-derived interferon-λ1 (IFN-λ1) inhibited inflammatory bone destruction in vivo and explored its underlying mechanisms on osteoclast formation in vitro. We found that IFN-λ1 was highly expressed in infectious bone tissue compared with that of non-infectious bone tissue. Additionally, dendritic cells marker genes such as CD80, CD86, and CD1a were higher expressed in infectious bone tissue than that of non-infectious bone tissue. Dendritic cells that were pretreated with LPS showed high expression of IFN-λ1. Moreover, conditioned medium of LPS-pretreated dendritic cells significantly inhibited osteoclast differentiation, as determined by TRAP staining assay. This suppressive effect was reversed by adding an IFN-λ1 monoclonal antibody. It was also investigated whether exogenous IFN-λ1 restrained osteoclastogenesis, bone resorption, F-actin ring formation, osteoclast-specific gene expression, release of pro-inflammatory cytokines, and translocation of p65 and NFATc1 by preventing the NF-κB signaling pathway and NLRP3 inflammasome formation, as well as by inducing the JAK-STAT signaling pathways in vitro. In vivo study indicated that IFN-λ1 prevents lipopolysaccharide (LPS)-induced inflammatory bone destruction by inhibiting excessive osteoclast fusion and bone resorption activity. In conclusion, our findings confirmed that dendritic cells-derived IFN-λ1 could attenuate osteoclast formation and bone resorptive activity in vitro and in vivo. These novel findings pave the way for the use of exogenous IFN-λ1 as a potential therapeutic treatment for excessive osteoclast-related diseases, such as inflammatory osteolysis, by regulating osteoclastogenesis to maintain the dynamic balance between bone formation and bone resorption.


Assuntos
Osso e Ossos/patologia , Células Dendríticas/metabolismo , Inflamação/patologia , Interferons/metabolismo , Interleucinas/metabolismo , Osteoclastos/patologia , Osteogênese , Animais , Reabsorção Óssea/complicações , Reabsorção Óssea/patologia , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Fusão Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamassomos/metabolismo , Inflamação/complicações , Mediadores da Inflamação/metabolismo , Interferons/farmacologia , Interleucinas/farmacologia , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteólise/patologia , Osteomielite/complicações , Osteomielite/patologia , Ligante RANK/metabolismo , Células RAW 264.7 , Transdução de Sinais
19.
Cell Mol Life Sci ; 77(24): 5149-5169, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32556373

RESUMO

Cancer metastasis is a unique feature of malignant tumours. Even bone can become a common colonization site due to the tendency of solid tumours, including breast cancer (BCa) and prostate cancer (PCa), to metastasize to bone. Currently, a previous concept in tumour metabolism called tumour dormancy may be a promising target for antitumour treatment. When disseminated tumour cells (DTCs) metastasize to the bone microenvironment, they form a flexible regulatory network called the "bone-tumour-inflammation network". In this network, bone turnover as well as metabolism, tumour progression, angiogenesis and inflammatory responses are highly unified and coordinated, and a slight shift in this balance can result in the disruption of the microenvironment, uncontrolled inflammatory responses and excessive tumour growth. The purpose of this review is to highlight the regulatory effect of the "bone-tumour-inflammation network" in tumour dormancy. Osteoblast-secreted factors, bone turnover and macrophages are emphasized and occupy in the main part of the review. In addition, the prospective clinical application of tumour dormancy is also discussed, which shows the direction of future research.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Inflamação/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Inflamação/genética , Inflamação/patologia , Masculino , Metástase Neoplásica , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Osteoblastos/metabolismo , Osteoblastos/patologia , Neoplasias da Próstata/patologia , Microambiente Tumoral/genética
20.
Biomed Pharmacother ; 125: 110010, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32187957

RESUMO

Skeletal system is a highly dynamic system going through continuous resorption and reconstruction to maintain homeostasis, which is influenced by numerous factors. Once the balance is disrupted, various kinds of bone diseases may occur such as osteoporosis. It has been well known that ATP (adenosine triphosphate), an important signaling molecule, is important in maintaining the dynamic balance of bone matrix. ATP mainly functions through P2X receptors, a kind of ATP receptors expressed by various kinds of bone cells to regulate the whole network of skeleton system. Among P2X receptors, P2X7 plays a crucial role in bone since P2X7 is widely expressed by bone cells and the mutation of P2X7 receptor is associated with kinds of bone diseases. It's acknowledged that P2X7 acts as a potential therapeutic target for clinical treatment of bone-related diseases but further investigations are needed for the practical application. However, since P2X7 has a complicated effect in many aspects, the exact role of P2X7 in skeleton system is ambiguous. This review discusses the function of P2X7 in bone and other cells and their general effect on skeleton system, especially focusing on the possible clinical application for bone diseases.


Assuntos
Doenças Ósseas/tratamento farmacológico , Osso e Ossos/efeitos dos fármacos , Receptores Purinérgicos P2X7/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Doenças Ósseas/fisiopatologia , Osso e Ossos/metabolismo , Humanos , Osteoporose/tratamento farmacológico , Osteoporose/fisiopatologia , Receptores Purinérgicos P2X7/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA