Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Quant Imaging Med Surg ; 14(9): 6621-6634, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39281120

RESUMO

Background: White-matter hyperintensity (WMH) is the key magnetic resonance imaging (MRI) marker of cerebral small-vessel disease (CSVD). This study aimed to investigate whether habitat analysis based on physiologic MRI parameters can predict the progression of WMH and cognitive decline in CSVD. Methods: Diffusion- and perfusion-weighted imaging data were obtained from 69 patients with CSVD at baseline and at 1-year of follow-up. The white-matter region was classified into constant WMH, growing WMH, shrinking WMH, and normal-appearing white matter (NAWM) according to the T2-fluid-attenuated inversion recovery (FLAIR) sequences images at the baseline and follow-up. We employed k-means clustering on a voxel-wise basis to delineate WMH habitats, integrating multiple diffusion metrics and cerebral blood flow (CBF) values derived from perfusion data. The WMH at the baseline and the predicted WMH from the habitat analysis were used as regions of avoidance (ROAs). The decreased rate of global efficiency for the whole brain structural connectivity was calculated after removal of the ROA. The association between the decreased rate of global efficiency and Montreal Cognitive Assessment (MoCA) and mini-mental state examination (MMSE) scores was evaluated using Pearson correlation coefficients. Results: We found that the physiologic MRI habitats with lower fractional anisotropy and CBF values and higher mean diffusivity, axial diffusivity, and radial diffusivity values overlapped considerably with the new WMH (growing WMH of baseline) after a 1-year follow-up; the accuracy of distinguishing growing WMH from NAWM was 88.9%±12.7% at baseline. Similar results were also found for the prediction of shrinking WMH. Moreover, after the removal of the predicted WMH, a decreased rate of global efficiency had a significantly negative correlation with the MoCA and MMSE scores at follow-up. Conclusions: This study revealed that a habitat analysis combining perfusion with diffusion parameters could predict the progression of WMH and related cognitive decline in patients with CSVD.

2.
Neuroimage ; 298: 120790, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147292

RESUMO

Brain microstructural alterations possibly occur in the normal-appearing white matter (NAWM) and grey matter of small vessel disease (SVD) patients, and may contribute to cognitive impairment. The aim of this study was to explore cognitive related microstructural alterations in white matter and deep grey matter nuclei in SVD patients using magnetic resonance (MR) quantitative susceptibility mapping (QSM). 170 SVD patients, including 103 vascular mild cognitive impairment (VaMCI) and 67 no cognitive impairment (NCI), and 21 healthy control (HC) subjects were included, all underwent a whole-brain QSM scanning. Using a white matter and a deep grey matter atlas, subregion-based QSM analysis was conducted to identify and characterize microstructural alterations occurring within white matter and subcortical nuclei. Significantly different susceptibility values were revealed in NAWM and in several specific white matter tracts including anterior limb of internal capsule, corticospinal tract, medial lemniscus, middle frontal blade, superior corona radiata and tapetum among VaMCI, NCI and HC groups. However, no difference was found in white matter hyperintensities between VaMCI and NCI. A trend toward higher susceptibility in the caudate nucleus and globus pallidus of VaMCI patients compared to HC, indicating elevated iron deposition in these areas. Interestingly, some of these QSM parameters were closely correlated with both global and specific cognitive function scores, controlling age, gender and education level. Our study suggested that QSM may serve as a useful imaging tool for monitoring cognitive related microstructural alterations in brain. This is especially meaningful for white matter which previously lacks of attention.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Substância Cinzenta , Imageamento por Ressonância Magnética , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Masculino , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Idoso , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Pessoa de Meia-Idade , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/patologia , Imageamento por Ressonância Magnética/métodos
3.
Life Sci ; 332: 122041, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657526

RESUMO

Stroke can induce cardiac dysfunction without a primary cardiac disease. Exercise can promote the overall rehabilitation of stroke patients and be beneficial for all kinds of heart diseases. However, the mechanisms underlying the protective effects of exercise in stroke-induced cardiac dysfunction are poorly understood. Hence, we aimed to distinguish the different effects of acute and long-term exercise and further study the mechanism of protection against cardiomyopathy caused by stroke. Mice underwent a single acute session or long-term exercise for 30 days, followed by middle cerebral artery occlusion surgery. The expression of apoptosis-related proteins and proinflammatory factors in the heart was evaluated. Then, overexpression of apelin peptide jejunum (APJ) transfected adeno-associated virus type 9 (AAV9) and inhibition of signal transducer and activator of transcription 3 (STAT3) by Stattic were used in stroke mice or hypoxic cardiomyocytes. ML221 were used to inhibit APJ activity in exercise mouse. Thereafter, changes in apoptotic and proinflammatory factors were evaluated. The results demonstrated that chronic exercise prevented myocardial inflammation, apoptosis and cardiac dysfunction after stroke. However, acute exercise did not have similar effects. Exercise maintained the levels of APJ expression and decreased phosphorylated-STAT3 (p-STAT3) activation to protect cardiomyocytes. Moreover, APJ overexpression promoted cardiomyocyte survival and reduced p-STAT3 levels. STAT3 inhibition also reduced apoptosis and proinflammatory factors in mice hearts. Conversely, the protective effect of exercise was eliminated by APJ inhibition. This study showed that exercise can maintain APJ expression and inhibit p-STAT3, thus, conferring protection against myocardial inflammation and apoptosis induced by stroke.

4.
Pathol Res Pract ; 246: 154491, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37141697

RESUMO

Non-small cell lung cancer (NSCLC) ranks the most lethal malignancies around the world, nearly 85 % of lung cancers are NSCLC. Its high prevalence and morbidity pose a considerable burden to human health, identifying promising therapeutic targets for NSCLC is urgently needed. The essential function of long non-coding RNAs (lncRNAs) in multiple cellular progressions and pathophysiological processes are widely understood, thus we investigated the role of lncRNA T-cell leukemia/lymphoma 6 (TCL6) in NSCLC progression. LncRNA TCL6 level is increased in NSCLC samples and downregulation of lncRNA TCL6 inhibited NSCLC tumorigenesis. Moreover, Scratch Family Transcriptional Repressor 1 (SCRT1) can modulate lncRNA TCL6 expression in NSCLC cells, with lncRNA TCL6 promoting NSCLC development through Pyruvate Dehydrogenase Kinase 1 (PDK1)/AKT signaling by interacting with PDK1, thereby providing a novel framework for NSCLC research.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética
5.
Front Oncol ; 12: 1096449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591493

RESUMO

Background: The progression process of lung cancer can be accelerated by M2 macrophages. However, genes that affect M2 macrophage polarization remain unidentified. Methods: The Cancer Genome Atlas, Gene Expression Omnibus, and Arrayexpress databases were used to obtain open-access data. The analysis of public data was mostly performed with R studio. The RNA levels of specific genes were detected using quantitative real-time PCR. The proliferation ability of the cells was assessed by CCK8, colony formation, and EdU assays. Results: Based on the multiple datasets, we noticed a poor prognosis in patients with high M2 macrophage infiltration. There were 114 genes differentially expressed between high and low M2 macrophages infiltrated samples, regarded as M2 macrophage-related genes. Subsequently, a prognosis prediction signature consisting of ABHD5, HS3ST2, TM6SF1, CAPZA2, LEPROT, HNMT, and MRO was identified and presented a satisfactory performance. The pathway enrichment results revealed a positive correlation between riskscore and enrichment scores for most immunotherapy-related positive terms. Also, there might be an increase in genomic instability among patients at high risk. Interestingly, low risk patients are most likely to benefit from PD-1 therapy, while high risk patients may benefit from CTLA-4 therapy. Meanwhile, the estimated IC50 of seven drugs differs significantly between two risk groups, including Cisplatin, Docetaxel, Doxorubicin, Gefitinib, Paclitaxel, Sunitinib and Vinorelbine. Moreover, further experiments indicated that HNMT was overexpressed and can enhance the proliferation ability in lung cancer cells. Conclusions: In summary, our study identified the molecules significantly affecting M2 macrophage infiltration and identified a prognosis signature that robustly indicated patients prognosis. Moreover, we validated the cancer-promoting effect of HNMT using in vitro experiments.

6.
J Immunol Res ; 2021: 5510869, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34258296

RESUMO

Circular RNA (circRNA) is a type of noncoding RNA that can interact with miRNAs to regulate gene expression. However, little is known concerning circRNA, which is crucial in the pathogenesis of lung cancer. To date, limited studies have explored the role of circ_0044516 in lung cancer progression. Recently, we observed that circ_0044516 expression levels were obviously elevated in lung cancer tissues and cells. A549 and SPCA1 cells were transfected with circ_0044516 siRNA. We observed that knockdown of circ_0044516 dramatically repressed cell proliferation, increased cell apoptosis, and repressed the cell cycle. Moreover, A549 and SPCA1 cell migration and invasion abilities were greatly repressed by circ_0044516 siRNA. Due to accumulating evidence demonstrating the vital role of cancer stem cells, their mechanism of involvement has drawn increasing attention in tumor progression and metastasis research. We also found that cancer stem cell properties were restrained by silencing circ_0044516 in A549 and SPC-A1 cells. Moreover, in vivo xenograft experiments showed that circ_0044516 downregulation reduced tumor growth. Mechanistically, in lung cancer and using bioinformatics, we demonstrated that circ_0044516 sponges miR-136 targeting MAT2A. Furthermore, rescue assays were carried out to identify that circ_0044516 modulates cell proliferation, invasion, and stemness by regulating miR-136 and MAT2A in lung cancer. In summary, our study revealed that the circ_0044516/miR-136/MAT2A axis is involved in lung cancer progression. Our findings may provide novel targets for diagnosis and therapeutic intervention in lung cancer patients.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Metionina Adenosiltransferase/genética , MicroRNAs/metabolismo , RNA Circular/metabolismo , Células A549 , Animais , Movimento Celular/genética , Progressão da Doença , Feminino , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/patologia , Invasividade Neoplásica/genética , RNA Circular/genética , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA