Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Chin Med ; : 1-17, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38798150

RESUMO

Hyperglycemia induces chronic stresses, such as oxidative stress and endoplasmic reticulum (ER) stress, which can result in [Formula: see text]-cell dysfunction and development of Type 2 Diabetes Mellitus (T2DM). Ginsenoside Rk1 is a minor ginsenoside isolated from Ginseng. It has been shown to exert anti-cancer, anti-inflammatory, anti-oxidant, and neuroprotective effects; however, its effects on pancreatic cells in T2DM have never been studied. This study aims to examine the novel effects of Ginsenoside Rk1 on ER stress-induced apoptosis in a pancreatic [Formula: see text]-cell line MIN6 and HFD-induced diabetic pancreas, and their underlying mechanisms. We demonstrated that Ginsenoside Rk1 alleviated ER stress-induced apoptosis in MIN6 cells, which was accomplished by directly targeting and activating insulin-like growth factor 1 receptor (IGF-1R), thus activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/Bcl-2-associated agonist of cell death (Bad)-B-cell lymphoma-2 (Bcl-2) pathway. This pathway was also confirmed in an HFD-induced diabetic pancreas. Meanwhile, the use of the IGF-1R inhibitor PQ401 abolished this anti-apoptotic effect, confirming the role of IGF-1R in mediating anti-apoptosis effects exerted by Ginsenoside Rk1. Besides, Ginsenoside Rk1 reduced pancreas weights and increased pancreatic insulin contents, suggesting that it could protect the pancreas from HFD-induced diabetes. Taken together, our study provided novel protective effects of Ginsenoside Rk1 on ER stress-induced [Formula: see text]-cell apoptosis and HFD-induced diabetic pancreases, as well as its direct target with IGF-1R, indicating that Ginsenoside Rk1 could be a potential drug for the treatment of T2DM.

2.
ACS Appl Mater Interfaces ; 16(17): 21571-21581, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636085

RESUMO

Ag2S quantum dots (QDs) show superior optical properties in the NIR-II region and display significant clinical potential with favorable biocompatibility. However, inherent defects of low targeting and poor solubility necessitate practical modification methods to achieve the theranostics of Ag2S QDs. Herein, we used rolling circle amplification (RCA) techniques to obtain long single-stranded DNA containing the PD-L1 aptamer and C-rich DNA palindromic sequence. The C-rich DNA palindromic sequences can specifically chelate Ag2+ and thus serve as a template to result in biomimetic mineralization and formation of pApt-Ag2S QDs. These QDs enable specific targeting and illuminate hot tumors with high PD-L1 expression effectively, serving as excellent molecular targeted probes. In addition, due to the high NIR-II absorption of Ag2S QDs, pApt-Ag2S QDs exhibit remarkable photothermal properties. And besides, polyvalent PD-L1 aptamers can recognize PD-L1 protein and effectively block the inhibitory signal of PD-L1 on T cells, enabling efficient theranostics through the synergistic effect of photothermal therapy and immune checkpoint blocking therapy. Summary, we enhance the biological stability and antibleaching ability of Ag2S QDs using long single-stranded DNA as a template, thereby establishing a theranostic platform that specifically targets PD-L1 high-expressing inflamed tumors and demonstrates excellent performance both in vitro and in vivo.


Assuntos
Aptâmeros de Nucleotídeos , Antígeno B7-H1 , Pontos Quânticos , Nanomedicina Teranóstica , Pontos Quânticos/química , Aptâmeros de Nucleotídeos/química , Antígeno B7-H1/metabolismo , Animais , Camundongos , Humanos , Neoplasias/tratamento farmacológico , Compostos de Prata/química , Linhagem Celular Tumoral , Raios Infravermelhos , Feminino
3.
J Am Chem Soc ; 146(20): 13805-13816, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38552185

RESUMO

Cuproptosis, a copper-dependent cell death process, has been confirmed to further activate the immune response and mediate the immune resistance. However, hypoxic tumor microenvironment hampers cuproptosis sensitivity and suppresses the body's antitumor immune response. Herein, we have successfully immobilized and functionalized catalase (CAT) with long single-stranded DNA containing polyvalent CpG sequences through rolling circle amplification (RCA) techniques, obtaining an enzyme-cored spherical nucleic acid nanoplatform (CAT-ecSNA-Cu) to deliver copper ions for cuproptosis. The presence of long-stranded DNA-protected CAT enhances mitochondrial respiration by catalyzing the conversion of H2O2 to O2, thereby sensitizing cuproptosis. Meanwhile, increased tumor oxygenation suppresses the expression of the hypoxia-inducible factor-1 (HIF-1) protein, resulting in the alleviation of the immunosuppressive tumor microenvironment. Of note, cuproptosis induces immunogenic cell death (ICD), which facilitates dendritic cell (DC) maturation and enhances antigen presentation through polyCpG-supported Toll-like receptor 9 (TLR9) activation. Furthermore, cuproptosis-induced PD-L1 upregulation in tumor cells complements checkpoint blockers (αPD-L1), enhancing antitumor immunity. The strategy of enhancing cuproptosis-mediated antitumor immune responses by alleviating hypoxia effectively promotes the activation and proliferation of effector T cells, ultimately leading to long-term immunity against cancer.


Assuntos
Catalase , Cobre , Hipóxia Tumoral , Hipóxia Tumoral/efeitos dos fármacos , Animais , Cobre/química , Catalase/metabolismo , Catalase/química , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Morte Celular Imunogênica/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos
4.
Theranostics ; 13(10): 3204-3223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351161

RESUMO

Gene therapy, an effective medical intervention strategy, is increasingly employed in basic research and clinical practice for promising and unique therapeutic effects for diseases treatment, such as cardiovascular disorders, cancer, neurological pathologies, infectious diseases, and wound healing. However, naked DNA/RNA is readily hydrolyzed by nucleic acid degrading enzymes in the extracellular environment and degraded by lysosomes during intracellular physiological conditions, thus gene transfer must cross complex cellular and tissue barriers to deliver genetic materials into targeted cells and drive efficient activation or inhibition of the proteins. At present, the lack of safe, highly efficient, and non-immunogenic drug carriers is the main drawback of gene therapy. Considering the dense hydroxyl groups on the benzene rings in natural polyphenols that exert a strong affinity to various nucleic acids via hydrogen bonding and hydrophobic interactions, polyphenol-based carriers are promising anchors for gene delivery in which polyphenols serve as the primary building blocks. In this review, the recent progress in polyphenol-assisted gene delivery was summarized, which provided an easily accessible reference for the design of future polyphenol-based gene delivery vectors. Nucleic acids discussed in this review include DNA, short interfering RNAs (siRNA), microRNA (miRNA), double-strand RNA (dsRNA), and messenger RNA (mRNA).


Assuntos
Ácidos Nucleicos , DNA/metabolismo , RNA Interferente Pequeno/genética , Técnicas de Transferência de Genes , Terapia Genética
5.
J Control Release ; 358: 510-540, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37169178

RESUMO

The etiology of inflammatory bowel disease (IBD) is extremely complex and related to an excessive immune response that results in the pathologically release of reactive oxygen species (ROS) via tissue injury and chronic inflammation. Generally, excessive ROS production is one of the essential mediators for inflammatory pathogenesis. Targeting cumulate ROS to interrupt pathological inflammatory responses has been recognized as a feasible strategy for inflammatory suppression of IBD. Correspondingly, the overexpression of ROS can also trigger the drug release of novel drug delivery systems to alleviate IBD symptoms. In this review, we summarized the pathological production of endogenous ROS in IBD, discussed the enormous potential of multiple kinds of ROS-scavenging and ROS-triggering novel delivery systems for the treatment of IBD, including enzymology, metal, polyphenols, natural pigments, nitroxide radicals-contained and sulfide-loaded drug delivery systems, and other novel ROS-responsive materials to synthesize ROS-based drug delivery systems. We also summarized the immunomodulatory effects of ROS-targeted drug delivery systems for the treatment of IBD. Besides, based on the requirements of clinical applications and industrialization development, the challenges faced in the evolution of redox drug delivery systems were also discussed. Collectively, this review provides a reliable reference to the development of ROS-scavenging and ROS-triggering drug delivery systems for the medical intervention of IBD.


Assuntos
Doenças Inflamatórias Intestinais , Humanos , Espécies Reativas de Oxigênio , Doenças Inflamatórias Intestinais/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Inflamação/tratamento farmacológico , Oxirredução
6.
J Adv Res ; 40: 263-276, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36100331

RESUMO

INTRODUCTION: Ulcerative colitis (UC) is a chronic recurrent idiopathic disease characterized by damage to the colonic epithelial barrier and disruption of inflammatory homeostasis. At present, there is no curative therapy for UC, and the development of effective and low-cost therapies is strongly advocated. OBJECTIVES: Multiple lines of evidence support that tannic acid (TA) and berberine (BBR), two active ingredients derived from Chinese herb pair (Rhei Radix et Rhizoma and Coptidis Rhizoma), have promising therapeutic effects on colonic inflammation. This study aims to develop a targeted delivery system based on BBR/TA-based self-assemblies for the treatment of UC. METHODS: TA and BBR self-assemblies were optimized, and hyaluronic acid (HA) was coated to achieve targeted colon delivery via HA-cluster of differentiation 44 (CD44) interactions. The system was systematically characterized and dextran sodium sulfate (DSS)-induced mouse colitis model was further used to investigate the biodistribution behavior, effect and mechanism of the natural system. RESULTS: TA and BBR could self-assemble into stable particles (TB) and HA-coated TB (HTB) further increased cellular uptake and accumulation in inflamed colon lesions. Treatment of HTB inhibited pro-inflammatory cytokine levels, restored expression of tight junction-associated proteins and recovered gut microbiome alteration, thereby exerting anti-inflammatory effects against DSS-induced acute colitis. CONCLUSION: Our targeted strategy may provide a convenient and powerful platform for UC and reveal new modes of application of herbal combinations.


Assuntos
Antineoplásicos , Berberina , Colite Ulcerativa , Colite , Animais , Antineoplásicos/uso terapêutico , Benzopiranos , China , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos , Salicilatos , Taninos/metabolismo , Proteínas de Junções Íntimas/metabolismo , Distribuição Tecidual
7.
Acta Pharm Sin B ; 12(8): 3367-3382, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35967288

RESUMO

With the development of synthesis technology, modified messenger RNA (mRNA) has emerged as a novel category of therapeutic agents for a broad of diseases. However, effective intracellular delivery of mRNA remains challenging, especially for its sensitivity to enzymatic degradation. Here, we propose a polyphenol-assisted handy delivery strategy for efficient in vivo delivery of IL-10 mRNA. IL-10 mRNA binds to polyphenol ellagic acid through supramolecular binding to yield a negatively charged core, followed by complexing with linear polyetherimide and coating with bilirubin-modified hyaluronic acid to obtain a layer-by-layer nanostructure. The nanostructure specifically up-regulated the level of IL-10, effectively inhibited the expression of inflammatory factors, promoted mucosal repair, protected colonic epithelial cells against apoptosis, and exerted potent therapeutic efficacy in dextran sulfate sodium salt-induced acute and chronic murine models of colitis. The designed delivery system without systemic toxicity has the potential to facilitate the development of a promising platform for mRNA delivery in ulcerative colitis treatment.

8.
Front Nutr ; 9: 914679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958258

RESUMO

Dimocarpus longan Lour. (also called as longan) is a subtropical and tropical evergreen tree belonging to the Sapindaceae family and is widely distributed in China, Southeast Asia and South Asia. The pulp of longan fruit is a time-honored traditional medicinal and edible raw material in China and some Asian countries. With the advancement of food therapy in modern medicine, longan fruit pulp as an edible medicinal material is expected to usher in its rapid development as a functional nutrient. As one of the main constituents of longan fruit pulp, longan fruit pulp polysaccharides (LPs) play an indispensable role in longan fruit pulp-based functional utilization. This review aims to outline the extraction and purification methods, structural characteristics and biological activities (such as immunoregulatory, anti-tumor, prebiotic, anti-oxidant, anti-inflammatory and inhibition of AChE activity) of LPs. Besides, the structure-activity relationship, application prospect and patent application of LPs were analyzed and summarized. Through the systematic summary, this review attempts to provide a theoretical basis for further research of LPs, and promote the industrial development of this class of polysaccharides.

9.
Adv Drug Deliv Rev ; 176: 113870, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34280511

RESUMO

As naturally occurring bioactive products, several lines of evidence have shown the potential of polyphenols in the medical intervention of various diseases, including tumors, inflammatory diseases, and cardiovascular diseases. Notably, owing to the particular molecular structure, polyphenols can combine with proteins, metal ions, polymers, and nucleic acids providing better strategies for polyphenol-delivery strategies. This contributes to the inherent advantages of polyphenols as important functional components for other drug delivery strategies, e.g., protecting nanodrugs from oxidation as a protective layer, improving the physicochemical properties of carbohydrate polymer carriers, or being used to synthesize innovative functional delivery vehicles. Polyphenols have emerged as a multifaceted player in novel drug delivery systems, both as therapeutic agents delivered to intervene in disease progression and as essential components of drug carriers. Although an increasing number of studies have focused on polyphenol-based nanodrug delivery including epigallocatechin-3-gallate, curcumin, resveratrol, tannic acid, and polyphenol-related innovative preparations, these molecules are not without inherent shortcomings. The active biochemical characteristics of polyphenols constitute a prerequisite to their high-frequency use in drug delivery systems and likewise to provoke new challenges for the design and development of novel polyphenol drug delivery systems of improved efficacies. In this review, we focus on both the targeted delivery of polyphenols and the application of polyphenols as components of drug delivery carriers, and comprehensively elaborate on the application of polyphenols in new types of drug delivery systems. According to the different roles played by polyphenols in innovative drug delivery strategies, potential limitations and risks are discussed in detail including the influences on the physical and chemical properties of nanodrug delivery systems, and their influence on normal physiological functions inside the organism.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Compostos Fitoquímicos/administração & dosagem , Polifenóis/administração & dosagem , Animais , Humanos
10.
Chin Med ; 16(1): 16, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526051

RESUMO

BACKGROUND: Shikonin (SKO) is a natural naphthoquinone derived from Chinese herbal medicine Arnebiae Radix with high development potentials due to its anti-inflammatory and anti-tumor activities. Overwhelming evidences have indicated that SKO can induce both necrosis and apoptosis in cancer cells, while the mechanisms for triple negative breast cancer cells is still need to be disclosed. METHODS: In this study, kinds of molecular biological technologies, including flow-cytometry, Western blot, immunoprecipitation, enzyme-linked immunosorbent assay (ELISA) as well as real-time quantitative PCR (RT-qPCR), were applied for investigation on the underlying mechanisms of SKO induced necrosis and apoptosis for MDA-MB-231 cells. Inhibitors were also used for validation ofthe key signaling pathways involved in SKO triggered necrosis and apoptosis. RESULTS: We found that SKO significantly triggered necrosis and apoptosis of MDA-MB-231 cells in both a concentration- and time-dependent manner. Mechanism studies demonstrated that SKO significantly promoted the autoubiquitination levels and facilitated the proteasome dependent degradation of cellular inhibitor of apoptosis protein 1 (cIAP1) and cIAP2 in MDA-MB-231 cells. Autoubiquitination and degradation of cIAP1 and cIAP2 induced by SKO further led to significant decreased ubiquitination and inactivation of RIP1, which played an important role in inhibition of pro-survival and accelerating of necrosis of MDA-MB-231 cells. Treatment with proteasome inhibitor lactacystin significantly rescued the cell viability induced by treatment of SKO. CONCLUSIONS: Our results demonstrate that SKO promotes the autoubiquitination and degradation of cIAP1 and cIAP2, which further induces the decrease of the ubiquitination of RIP1 to inhibit the activation of pro-survival signaling pathways and accelerate the necrosis of MDA-MB-231 cells. The disclosed mechanisms of SKO induced necrosis and apoptosis in our study is firstly reported, and it is believed that SKO could be considered as a potential candidate and further developed for the treatment of triple negative breast cancer.

11.
Mol Pharm ; 17(7): 2260-2274, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32433886

RESUMO

Reactive oxygen species (ROS) are chemically reactive species that are produced in cellular aerobic metabolism. They mainly include superoxide anion, hydrogen peroxide, hydroxyl radicals, singlet oxygen, ozone, and nitric oxide and are implicated in many physiological and pathological processes. Bilirubin, a cardinal pigment in the bile, has been increasingly investigated to treat cancer, diabetes, ischemia-reperfusion injury, asthma, and inflammatory bowel diseases (IBD). Indeed, bilirubin has been shown to eliminate ROS production, so it is now considered as a promising therapeutic agent for ROS-mediated diseases and can be used for the development of antioxidative nanomedicines. This review summarizes the current knowledge of the physiological mechanisms of ROS production and its role in pathological changes and focuses on discussing the antioxidative effects of bilirubin and its application in the experimental studies of nanomedicines. Previous studies have shown that bilirubin was mainly used as a responsive molecule in the microenvironment of ROS overproduction in neoplastic tissues for the development of anticancer nanodrugs; however, it could also exert powerful ROS scavenging activity in chronic inflammation and ischemia-reperfusion injury. Therefore, bilirubin, as an inartificial ROS scavenger, is expected to be used for the development of nanomedicines against more diseases due to the universality of ROS involvement in human pathological conditions.


Assuntos
Antioxidantes/farmacologia , Bilirrubina/farmacologia , Nanomedicina/métodos , Neoplasias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Antioxidantes/efeitos adversos , Antioxidantes/uso terapêutico , Bilirrubina/efeitos adversos , Bilirrubina/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Neoplasias/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos
12.
J Nutr Biochem ; 77: 108268, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31830590

RESUMO

Glycyrrhetinic acid (GA) is a major bioactive compound of licorice. The objective of this study was to investigate the effects of GA on ovarian cancer, particularly those related to angiogenesis and apoptosis, and to elucidate the underlying mechanisms of action. In vitro studies showed that GA significantly inhibited proliferation, migration, invasion and tube formation in human umbilical vein endothelial cells (HUVECs) in a concentration-dependent manner. GA inhibited the phosphorylation of major receptors and enzymes involved in angiogenesis, such as VEGFR2, mTOR, Akt, ERK1/2, MEK1/2, p38 and JNK1/2 in HUVECs. In addition, GA induced apoptosis, loss of mitochondrial membrane potential and cell cycle arrest in G1 phase in A2780 ovarian cancer cells. The proapoptotic effect of GA involved the increased phosphorylation of p38 and JNK1/2; increased cleavage of caspase 3, caspase 9 and PARP; reduced phosphorylation of mTOR, Akt and ERK1/2; and reduced expressions of survivin and cyclin D1. Ex vivo studies showed that GA significantly inhibited microvessel sprouting in rat aortic ring model. In vivo studies showed that GA inhibited the formation of new blood vessels in zebrafish and mouse Matrigel plug. GA also significantly reduced the size of ovarian cancer xenograft tumors in nude mice. Taken together, GA possesses potential antitumor effects, and the underlying mechanisms may involve the inhibition of signaling pathways related to angiogenesis and the activation of apoptotic pathways in cancer cells. Our findings suggest that GA could serve as an effective regimen in the prevention or treatment of cancer.


Assuntos
Apoptose/efeitos dos fármacos , Ácido Glicirretínico/farmacologia , Neovascularização Patológica/prevenção & controle , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/prevenção & controle , Animais , Aorta/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Nus , Invasividade Neoplásica , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
13.
Food Chem Toxicol ; 119: 309-325, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29486278

RESUMO

Chuanxiong Rhizome (called Chuanxiong, CX in Chinese), the dried rhizome of Ligusticum chuanxiong Hort, is an extremely common traditional edible-medicinal herb. As a widely used ethnomedicine in Asia including China, Japan and Korea, CX possesses ideal therapeutic effect on cardiovascular and cerebrovascular diseases, and is also used as a major ingredient in soups for regular consumption to benefit health. Based on the traditional perception, amounts of investigations on different aspects have been done for CX in the past decades. However, no literature systematic review about these achievements have been compiled. Herein, the aim of this review is to present the up-to-date information on the ethnobotany, ethnopharmacological uses, phytochemicals, pharmacological activities, toxicology of this plant to identify their therapeutic potential and directs future research opportunities. So far, about 174 compounds has been isolated and identified from CX, in which phthalides and alkaloids would be the main bioactive ingredients for its pharmacological properties, such as anti-cerebral ischemia, anti-myocardial ischemia, blood vessel protection, anti-thrombotic, anti-hypertensive, anti-atherosclerosis, anti-spasmodic, anti-inflammatory, anti-cancer, anti-oxidant, and anti-asthma effects. Even so, due to the incomplete standardized planting, unstable herbal quality, and outdated preparation techniques, the industrial progress of CX is still less developed.


Assuntos
Ligusticum/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Rizoma/química , Etnobotânica , Etnofarmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA