Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 304, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997135

RESUMO

To evaluate the effects of fructose diphosphate (FDP) on routine coagulation tests in vitro, we added FDP into the mixed normal plasma to obtain the final concentration of 0, 1, 2, 3, 4, 5, 6, 10, 15, 20, 25, 30 and 35 mg/mL of drug. Prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen (FBG) and thrombin time (TT) of samples were analyzed with blood coagulation analyzers from four different manufacturers(Sysmex, Stago, SEKISUI and Werfen) and their corresponding reagents, respectively. Before the experiment, we also observed whether there were significant differences in coagulation test results of different lots of reagents produced by each manufacturer. At the same time as the four routine clotting tests, the Sysmex blood coagulation analyzer and its proprietary analysis software were used to detect the change of maximum platelet aggregation rate in platelet-rich plasma after adding FDP (0, 1, 2, 3, 4, 5 and 6 mg/mL). The results of PT, aPTT and TT showed a FDP (0-35 mg/mL) concentration-dependent increase and a FBG concentration-dependent decrease. The degree of change (increase or decrease) varied depending on the assay system, with PT and aPTT being more affected by the Sysmex blood coagulation testing instrument reagent system and less affected by CEKISUI, TT less affected by CEKISUI and more affected by Stago, and FBG less affected by Stago and more affected by Sysmex. The results of PT, aPTT and TT were statistically positively correlated with their FDP concentrations, while FBG was negatively correlated. The correlation coefficients between FDP and the coagulation testing systems of Sysmex, Stago, Werfen and SEKISUI were 0.975, 0.988, 0.967, 0.986 for PT, and 0.993, 0.989, 0.990 and 0.962 for aPTT, 0.994, 0.960, 0.977 and 0.982 for TT, - 0.990, - 0.983, - 0.989 and - 0.954 for FBG, respectively. Different concentrations of FDP (0, 1, 2, 3, 4, 5 and 6 mg/mL) had different effects on the maximum aggregation rate of platelet induced by the agonists of adenosine diphosphate (ADP, 5 µmol/L), arachidonic acid (Ara, 1 mmol/L), collagen (Col, 2.5 µg/mL) and epinephrine (Epi,10 µmol/L), but the overall downward trend was consistent, that is, with the increase of FDP concentration, the platelet aggregation rate decreased significantly. Our experimental study demonstrated a possible effect of FDP on the assays of coagulation and Platelet aggregation, which may arise because the drug interferes with the coagulation and platelet aggregation detection system, or it may affect our in vivo coagulation system and Platelet aggregation function, the real mechanism of which remains to be further verified and studied.


Assuntos
Testes de Coagulação Sanguínea , Coagulação Sanguínea/efeitos dos fármacos , Frutosedifosfatos/farmacologia , Relação Dose-Resposta a Droga , Humanos , Tempo de Tromboplastina Parcial , Agregação Plaquetária/efeitos dos fármacos , Testes de Função Plaquetária , Tempo de Protrombina , Tempo de Trombina
2.
J Cardiovasc Pharmacol ; 74(5): 453-461, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31651553

RESUMO

Cardiac hypertrophy is an adaptive expansion of the myocardium due to the overloaded stress of heart. Recently, emerging studies have drawn a conclusion that microRNAs (miRNAs) are involved in myocardial hypertrophy and even heart failure. To figure out the role of microRNA-200a-3p (miR-200a-3p) in cardiac hypertrophy, the in vitro cardiac hypertrophy model was established in H9c2 cells using angiotensin II (Ang-II) as previously described. First of all, we observed a significant increase of miR-200a-3p expression in Ang-II-induced hypertrophic H9c2 cells. Moreover, inhibition of miR-200a-3p dramatically reversed the Ang-II-upregulated expression of hypertrophic markers (atrial natriuretic peptide, brain natriuretic peptide, and ß-MHC) and the expanded cell surface area in H9c2 cells. In addition, our results indicated that miR-200a-3p directly targeted both WDR1 and phosphatase and tensin homolog (PTEN). In this regard, miR-200a-3p further activated PI3K/AKT/CREB pathway so as to intensify its negative regulation on WDR1. At length, WDR1 silence, PTEN inhibitor, and PI3K activator recovered the repressive effect of miR-200a-3p suppression on the development of cardiac hypertrophy. Jointly, our study suggested that miR-200a-3p facilitated cardiac hypertrophy by not only directly targeting WDR1 but also through modulating PTEN/PI3K/AKT/CREB/WDR1 signaling, therefore proving novel downstream molecular pathway of miR-200a-3p in cardiac hypertrophy.


Assuntos
Cardiomegalia/enzimologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , MicroRNAs/metabolismo , Proteínas dos Microfilamentos/metabolismo , Miocárdio/enzimologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Remodelação Ventricular , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Proliferação de Células , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteínas dos Microfilamentos/genética , Miocárdio/patologia , PTEN Fosfo-Hidrolase/genética , Fosforilação , Transdução de Sinais
3.
Int Immunopharmacol ; 61: 283-289, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29906743

RESUMO

Lipoteichoic acid (LTA)-induced acute lung injury (ALI) is an experimental model for mimicking Gram-positive bacteria-induced pneumonia that is a refractory disease with lack of effective medicines. Here, we reported that costunolide, a sesquiterpene lactone, ameliorated LTA-induced ALI. Costunolide treatment reduced LTA-induced neutrophil lung infiltration, cytokine and chemokine production (TNF-α, IL-6 and KC), and pulmonary edema. In response to LTA challenge, treatment with costunolide resulted less iNOS expression and produced less inflammatory cytokines in bone marrow derived macrophages (BMDMs). Pretreatment with costunolide also attenuated the LTA-induced the phosphorylation of p38 MAPK and ERK in BMDMs. Furthermore, costunolide treatment reduced the phosphorylation of TAK1 and inhibited the interaction of TAK1 with Tab1. In conclusion, we have demonstrated that costunolide protects against LTA-induced ALI via inhibiting TAK1-mediated MAPK signaling pathway, and our studies suggest that costunolide is a promising agent for treatment of Gram-positive bacteria-mediated pneumonia.


Assuntos
Anti-Inflamatórios/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Bactérias Gram-Positivas/fisiologia , Pulmão/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Pneumonia Bacteriana/tratamento farmacológico , Edema Pulmonar/tratamento farmacológico , Sesquiterpenos/uso terapêutico , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Pulmão/imunologia , Pulmão/patologia , MAP Quinase Quinase Quinases/metabolismo , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Transdução de Sinais , Ácidos Teicoicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA