Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Sci Transl Med ; 16(755): eadn0689, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985856

RESUMO

Mutations in microRNA-96 (MIR96) cause autosomal dominant deafness-50 (DFNA50), a form of delayed-onset hearing loss. Genome editing has shown efficacy in hearing recovery through intervention in neonatal mice, yet editing in the adult inner ear is necessary for clinical applications, which has not been done. Here, we developed a genome editing therapy for the MIR96 mutation 14C>A by screening different CRISPR systems and optimizing Cas9 expression and the sgRNA scaffold for efficient and specific mutation editing. AAV delivery of the KKH variant of Staphylococcus aureus Cas9 (SaCas9-KKH) and sgRNA to the cochleae of presymptomatic (3-week-old) and symptomatic (6-week-old) adult Mir9614C>A/+ mutant mice improved hearing long term, with efficacy increased by injection at a younger age. Adult inner ear delivery resulted in transient Cas9 expression without evidence of AAV genomic integration, indicating the good safety profile of our in vivo genome editing strategy. We developed a dual-AAV system, including an AAV-sgmiR96-master carrying sgRNAs against all known human MIR96 mutations. Because mouse and human MIR96 sequences share 100% homology, our approach and sgRNA selection for efficient and specific hair cell editing for long-term hearing recovery lay the foundation for the development of treatment for patients with DFNA50 caused by MIR96 mutations.


Assuntos
Dependovirus , Edição de Genes , Perda Auditiva , MicroRNAs , Mutação , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Edição de Genes/métodos , Humanos , Mutação/genética , Perda Auditiva/genética , Perda Auditiva/terapia , Dependovirus/genética , Camundongos , Sistemas CRISPR-Cas/genética , Cóclea/metabolismo , Terapia Genética/métodos , RNA Guia de Sistemas CRISPR-Cas/genética , Sequência de Bases , Audição
2.
Nat Med ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839897

RESUMO

Gene therapy is a promising approach for hereditary deafness. We recently showed that unilateral AAV1-hOTOF gene therapy with dual adeno-associated virus (AAV) serotype 1 carrying human OTOF transgene is safe and associated with functional improvements in patients with autosomal recessive deafness 9 (DFNB9). The protocol was subsequently amended and approved to allow bilateral gene therapy administration. Here we report an interim analysis of the single-arm trial investigating the safety and efficacy of binaural therapy in five pediatric patients with DFNB9. The primary endpoint was dose-limiting toxicity at 6 weeks, and the secondary endpoint included safety (adverse events) and efficacy (auditory function and speech perception). No dose-limiting toxicity or serious adverse event occurred. A total of 36 adverse events occurred. The most common adverse events were increased lymphocyte counts (6 out of 36) and increased cholesterol levels (6 out of 36). All patients had bilateral hearing restoration. The average auditory brainstem response threshold in the right (left) ear was >95 dB (>95 dB) in all patients at baseline, and the average auditory brainstem response threshold in the right (left) ear was restored to 58 dB (58 dB) in patient 1, 75 dB (85 dB) in patient 2, 55 dB (50 dB) in patient 3 at 26 weeks, and 75 dB (78 dB) in patient 4 and 63 dB (63 dB) in patient 5 at 13 weeks. The speech perception and the capability of sound source localization were restored in all five patients. These results provide preliminary insights on the safety and efficacy of binaural AAV gene therapy for hereditary deafness. The trial is ongoing with longer follow-up to confirm the safety and efficacy findings. Chinese Clinical Trial Registry registration: ChiCTR2200063181 .

3.
Hum Genet ; 143(5): 721-734, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38691166

RESUMO

TMPRSS3-related hearing loss presents challenges in correlating genotypic variants with clinical phenotypes due to the small sample sizes of previous studies. We conducted a cross-sectional genomics study coupled with retrospective clinical phenotype analysis on 127 individuals. These individuals were from 16 academic medical centers across 6 countries. Key findings revealed 47 unique TMPRSS3 variants with significant differences in hearing thresholds between those with missense variants versus those with loss-of-function genotypes. The hearing loss progression rate for the DFNB8 subtype was 0.3 dB/year. Post-cochlear implantation, an average word recognition score of 76% was observed. Of the 51 individuals with two missense variants, 10 had DFNB10 with profound hearing loss. These 10 all had at least one of 4 TMPRSS3 variants predicted by computational modeling to be damaging to TMPRSS3 structure and function. To our knowledge, this is the largest study of TMPRSS3 genotype-phenotype correlations. We find significant differences in hearing thresholds, hearing loss progression, and age of presentation, by TMPRSS3 genotype and protein domain affected. Most individuals with TMPRSS3 variants perform well on speech recognition tests after cochlear implant, however increased age at implant is associated with worse outcomes. These findings provide insight for genetic counseling and the on-going design of novel therapeutic approaches.


Assuntos
Estudos de Associação Genética , Perda Auditiva , Proteínas de Membrana , Serina Endopeptidases , Humanos , Feminino , Masculino , Serina Endopeptidases/genética , Adulto , Proteínas de Membrana/genética , Perda Auditiva/genética , Criança , Pessoa de Meia-Idade , Adolescente , Pré-Escolar , Genótipo , Estudos de Coortes , Fenótipo , Mutação de Sentido Incorreto , Estudos Transversais , Adulto Jovem , Estudos Retrospectivos , Idoso , Proteínas de Neoplasias
4.
Cancer Discov ; 14(4): 683-689, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571435

RESUMO

Research on precancers, as defined as at-risk tissues and early lesions, is of high significance given the effectiveness of early intervention. We discuss the need for risk stratification to prevent overtreatment, an emphasis on the role of genetic and epigenetic aging when considering risk, and the importance of integrating macroenvironmental risk factors with molecules and cells in lesions and at-risk normal tissues for developing effective intervention and health policy strategies.


Assuntos
Lesões Pré-Cancerosas , Humanos , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Fatores de Risco
5.
Lancet ; 403(10441): 2317-2325, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38280389

RESUMO

BACKGROUND: Autosomal recessive deafness 9, caused by mutations of the OTOF gene, is characterised by congenital or prelingual, severe-to-complete, bilateral hearing loss. However, no pharmacological treatment is currently available for congenital deafness. In this Article, we report the safety and efficacy of gene therapy with an adeno-associated virus (AAV) serotype 1 carrying a human OTOF transgene (AAV1-hOTOF) as a treatment for children with autosomal recessive deafness 9. METHODS: This single-arm, single-centre trial enrolled children (aged 1-18 years) with severe-to-complete hearing loss and confirmed mutations in both alleles of OTOF, and without bilateral cochlear implants. A single injection of AAV1-hOTOF was administered into the cochlea through the round window. The primary endpoint was dose-limiting toxicity at 6 weeks after injection. Auditory function and speech were assessed by appropriate auditory perception evaluation tools. All analyses were done according to the intention-to-treat principle. This trial is registered with Chinese Clinical Trial Registry, ChiCTR2200063181, and is ongoing. FINDINGS: Between Oct 19, 2022, and June 9, 2023, we screened 425 participants for eligibility and enrolled six children for AAV1-hOTOF gene therapy (one received a dose of 9 × 1011 vector genomes [vg] and five received 1·5 × 1012 vg). All participants completed follow-up visits up to week 26. No dose-limiting toxicity or serious adverse events occurred. In total, 48 adverse events were observed; 46 (96%) were grade 1-2 and two (4%) were grade 3 (decreased neutrophil count in one participant). Five children had hearing recovery, shown by a 40-57 dB reduction in the average auditory brainstem response (ABR) thresholds at 0·5-4·0 kHz. In the participant who received the 9 × 1011 vg dose, the average ABR threshold was improved from greater than 95 dB at baseline to 68 dB at 4 weeks, 53 dB at 13 weeks, and 45 dB at 26 weeks. In those who received 1·5 × 1012 AAV1-hOTOF, the average ABR thresholds changed from greater than 95 dB at baseline to 48 dB, 38 dB, 40 dB, and 55 dB in four children with hearing recovery at 26 weeks. Speech perception was improved in participants who had hearing recovery. INTERPRETATION: AAV1-hOTOF gene therapy is safe and efficacious as a novel treatment for children with autosomal recessive deafness 9. FUNDING: National Natural Science Foundation of China, National Key R&D Program of China, Science and Technology Commission of Shanghai Municipality, and Shanghai Refreshgene Therapeutics.


Assuntos
Dependovirus , Terapia Genética , Humanos , Terapia Genética/métodos , Dependovirus/genética , Criança , Masculino , Pré-Escolar , Feminino , Adolescente , Lactente , Vetores Genéticos , Resultado do Tratamento , Surdez/genética , Surdez/terapia , Mutação , Proteínas de Membrana
6.
Cell ; 186(25): 5620-5637.e16, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065082

RESUMO

Colorectal cancer exhibits dynamic cellular and genetic heterogeneity during progression from precursor lesions toward malignancy. Analysis of spatial multi-omic data from 31 human colorectal specimens enabled phylogeographic mapping of tumor evolution that revealed individualized progression trajectories and accompanying microenvironmental and clonal alterations. Phylogeographic mapping ordered genetic events, classified tumors by their evolutionary dynamics, and placed clonal regions along global pseudotemporal progression trajectories encompassing the chromosomal instability (CIN+) and hypermutated (HM) pathways. Integrated single-cell and spatial transcriptomic data revealed recurring epithelial programs and infiltrating immune states along progression pseudotime. We discovered an immune exclusion signature (IEX), consisting of extracellular matrix regulators DDR1, TGFBI, PAK4, and DPEP1, that charts with CIN+ tumor progression, is associated with reduced cytotoxic cell infiltration, and shows prognostic value in independent cohorts. This spatial multi-omic atlas provides insights into colorectal tumor-microenvironment co-evolution, serving as a resource for stratification and targeted treatments.


Assuntos
Neoplasias Colorretais , Instabilidade de Microssatélites , Microambiente Tumoral , Humanos , Instabilidade Cromossômica/genética , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica , Quinases Ativadas por p21/genética , Filogenia , Mutação , Progressão da Doença , Prognóstico
7.
Mol Ther Methods Clin Dev ; 31: 101154, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38027066

RESUMO

Pathogenic mutations in the OTOF gene cause autosomal recessive hearing loss (DFNB9), one of the most common forms of auditory neuropathy. There is no biological treatment for DFNB9. Here, we designed an OTOF gene therapy agent by dual-adeno-associated virus 1 (AAV1) carrying human OTOF coding sequences with the expression driven by the hair cell-specific promoter Myo15, AAV1-hOTOF. To develop a clinical application of AAV1-hOTOF gene therapy, we evaluated its efficacy and safety in animal models using pharmacodynamics, behavior, and histopathology. AAV1-hOTOF inner ear delivery significantly improved hearing in Otof-/- mice without affecting normal hearing in wild-type mice. AAV1 was predominately distributed to the cochlea, although it was detected in other organs such as the CNS and the liver, and no obvious toxic effects of AAV1-hOTOF were observed in mice. To further evaluate the safety of Myo15 promoter-driven AAV1-transgene, AAV1-GFP was delivered into the inner ear of Macaca fascicularis via the round window membrane. AAV1-GFP transduced 60%-94% of the inner hair cells along the cochlear turns. AAV1-GFP was detected in isolated organs and no significant adverse effects were detected. These results suggest that AAV1-hOTOF is well tolerated and effective in animals, providing critical support for its clinical translation.

8.
Mol Cell ; 83(14): 2509-2523.e13, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37402366

RESUMO

K-Ras frequently acquires gain-of-function mutations (K-RasG12D being the most common) that trigger significant transcriptomic and proteomic changes to drive tumorigenesis. Nevertheless, oncogenic K-Ras-induced dysregulation of post-transcriptional regulators such as microRNAs (miRNAs) during oncogenesis is poorly understood. Here, we report that K-RasG12D promotes global suppression of miRNA activity, resulting in the upregulation of hundreds of targets. We constructed a comprehensive profile of physiological miRNA targets in mouse colonic epithelium and tumors expressing K-RasG12D using Halo-enhanced Argonaute pull-down. Combining this with parallel datasets of chromatin accessibility, transcriptome, and proteome, we uncovered that K-RasG12D suppressed the expression of Csnk1a1 and Csnk2a1, subsequently decreasing Ago2 phosphorylation at Ser825/829/832/835. Hypo-phosphorylated Ago2 increased binding to mRNAs while reducing its activity to repress miRNA targets. Our findings connect a potent regulatory mechanism of global miRNA activity to K-Ras in a pathophysiological context and provide a mechanistic link between oncogenic K-Ras and the post-transcriptional upregulation of miRNA targets.


Assuntos
MicroRNAs , Neoplasias , Animais , Camundongos , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Genes ras , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Proteômica
9.
Audiol Neurootol ; 28(6): 407-419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37331337

RESUMO

BACKGROUND: Mutations in TMPRSS3 are an important cause of autosomal recessive non-syndromic hearing loss. The hearing loss associated with mutations in TMPRSS3 is characterized by phenotypic heterogeneity, ranging from mild to profound hearing loss, and is generally progressive. Clinical presentation and natural history of TMPRSS3 mutations vary significantly based on the location and type of mutation in the gene. Understanding these genotype-phenotype relationships and associated natural disease histories is necessary for the successful development and application of gene-based therapies and precision medicine approaches to DFNB8/10. The heterogeneous presentation of TMPRSS3-associated disease makes it difficult to identify patients clinically. As the body of literature on TMPRSS3-associated deafness grows, there is need for better categorization of the hearing phenotypes associated with specific mutations in the gene. SUMMARY: In this review, we summarize TMPRSS3 genotype-phenotype relationships including a thorough description of the natural history of patients with TMPRSS3-associated hearing loss to lay the groundwork for the future of TMPRSS3 treatment using molecular therapy. KEY MESSAGES: TMPRSS3 mutation is a significant cause of genetic hearing loss. All patients with TMPRSS3 mutation display severe-to-profound prelingual (DFNB10) or a postlingual (DFNB8) progressive sensorineural hearing loss. Importantly, TMPRSS3 mutations have not been associated with middle ear or vestibular deficits. The c.916G>A (p.Ala306Thr) missense mutation is the most frequently reported mutation across populations and should be further explored as a target for molecular therapy.


Assuntos
Perda Auditiva Neurossensorial , Perda Auditiva , Humanos , Serina Endopeptidases/genética , Proteínas de Membrana/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva/genética , Mutação , Estudos de Associação Genética , Fenótipo , Proteínas de Neoplasias/genética
10.
Mol Ther ; 31(9): 2796-2810, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37244253

RESUMO

Patients with mutations in the TMPRSS3 gene suffer from recessive deafness DFNB8/DFNB10. For these patients, cochlear implantation is the only treatment option. Poor cochlear implantation outcomes are seen in some patients. To develop biological treatment for TMPRSS3 patients, we generated a knockin mouse model with a frequent human DFNB8 TMPRSS3 mutation. The Tmprss3A306T/A306T homozygous mice display delayed onset progressive hearing loss similar to human DFNB8 patients. Using AAV2 as a vector to carry a human TMPRSS3 gene, AAV2-hTMPRSS3 injection in the adult knockin mouse inner ear results in TMPRSS3 expression in the hair cells and the spiral ganglion neurons. A single AAV2-hTMPRSS3 injection in Tmprss3A306T/A306T mice of an average age of 18.5 months leads to sustained rescue of the auditory function to a level similar to wild-type mice. AAV2-hTMPRSS3 delivery rescues the hair cells and the spiral ganglions neurons. This study demonstrates successful gene therapy in an aged mouse model of human genetic deafness. It lays the foundation to develop AAV2-hTMPRSS3 gene therapy to treat DFNB8 patients, as a standalone therapy or in combination with cochlear implantation.


Assuntos
Surdez , Serina Endopeptidases , Adulto , Humanos , Camundongos , Animais , Lactente , Serina Endopeptidases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Audição , Surdez/genética , Surdez/terapia , Terapia Genética , Proteínas de Neoplasias/genética
11.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37166989

RESUMO

Although selenium deficiency correlates with colorectal cancer (CRC) risk, the roles of the selenium-rich antioxidant selenoprotein P (SELENOP) in CRC remain unclear. In this study, we defined SELENOP's contributions to sporadic CRC. In human single-cell cRNA-Seq (scRNA-Seq) data sets, we discovered that SELENOP expression rose as normal colon stem cells transformed into adenomas that progressed into carcinomas. We next examined the effects of Selenop KO in a mouse adenoma model that involved conditional, intestinal epithelium-specific deletion of the tumor suppressor adenomatous polyposis coli (Apc) and found that Selenop KO decreased colon tumor incidence and size. We mechanistically interrogated SELENOP-driven phenotypes in tumor organoids as well as in CRC and noncancer cell lines. Selenop-KO tumor organoids demonstrated defects in organoid formation and decreases in WNT target gene expression, which could be reversed by SELENOP restoration. Moreover, SELENOP increased canonical WNT signaling activity in noncancer and CRC cell lines. In defining the mechanism of action of SELENOP, we mapped protein-protein interactions between SELENOP and the WNT coreceptors low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6). Last, we confirmed that SELENOP-LRP5/6 interactions contributed to the effects of SELENOP on WNT activity. Overall, our results position SELENOP as a modulator of the WNT signaling pathway in sporadic CRC.


Assuntos
Adenoma , Neoplasias Colorretais , Selênio , Camundongos , Animais , Humanos , Via de Sinalização Wnt , Selenoproteína P/genética , Selenoproteína P/metabolismo , Neoplasias Colorretais/patologia , Selênio/metabolismo , Carcinogênese/genética , Adenoma/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
12.
Cancer Prev Res (Phila) ; 16(8): 439-447, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167978

RESUMO

Tissue profiling technologies present opportunities for understanding transition from precancerous lesions to malignancy, which may impact risk stratification, prevention, and even cancer treatment. A human precancer atlas building effort is ongoing to tackle the significant challenge of decoding the heterogeneity among cells, specimens, and patients. Here, we discuss the findings resulting from atlases built across precancer types, including those found in colon, breast, lung, stomach, cervix, and skin, using bulk, single-cell, and spatial profiling strategies. We highlight two main themes that emerge across precancer types: the ordering of molecular events that occur during tumor progression and the fluctuation of microenvironmental response during precancer progression. We further highlight the key challenges of data integration across large cohorts of patients, and the need for computational tools to reliably annotate and quality control high-volume, high-dimensional data.


Assuntos
Lesões Pré-Cancerosas , Feminino , Humanos , Lesões Pré-Cancerosas/patologia , Colo do Útero/patologia , Mama/patologia , Pele/patologia
13.
Clin Infect Dis ; 77(2): 272-279, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37011013

RESUMO

BACKGROUND: People with human immunodeficiency virus (PWH) are at increased risk for comorbidities, and plasma interleukin 6 (IL-6) levels are among the most robust predictors of these outcomes. Tocilizumab (TCZ) blocks the receptor for IL-6, inhibiting functions of this cytokine. METHODS: This was a 40-week, placebo-controlled, crossover trial (NCT02049437) where PWH on stable antiretroviral therapy (ART) were randomized to receive 3 monthly doses of TCZ or matching placebo intravenously. Following a 10-week treatment period and a 12-week washout, participants were switched to the opposite treatment. The primary endpoints were safety and posttreatment levels of C-reactive protein (CRP) and CD4+ T-cell cycling. Secondary endpoints included changes in inflammatory indices and lipid levels. RESULTS: There were 9 treatment-related toxicities of grade 2 or greater during TCZ administration (mostly neutropenia) and 2 during placebo administration. Thirty-one of 34 participants completed the study and were included in a modified intent-to-treat analysis. TCZ reduced levels of CRP (median decrease, 1819.9 ng/mL, P < .0001; effect size, 0.87) and reduced inflammatory markers in PWH, including D-dimer, soluble CD14, and tumor necrosis factor receptors. T-cell cycling tended to decrease in all maturation subsets after TCZ administration, but was only significant among naive CD4 T cells. Lipid levels, including lipid classes that have been related to cardiovascular disease risk, increased during TCZ treatment. CONCLUSIONS: TCZ is safe and decreases inflammation in PWH; IL-6 is a key driver of the inflammatory environment that predicts morbidity and mortality in ART-treated PWH. The clinical significance of lipid elevations during TCZ treatment requires further study. Clinical Trials Registration. NCT02049437.


Assuntos
Infecções por HIV , Interleucina-6 , Humanos , Infecções por HIV/tratamento farmacológico , Inflamação/tratamento farmacológico , Interleucina-6/metabolismo , Lipídeos , Estudos Cross-Over
14.
bioRxiv ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38187699

RESUMO

Key to understanding many biological phenomena is knowing the temporal ordering of cellular events, which often require continuous direct observations [1, 2]. An alternative solution involves the utilization of irreversible genetic changes, such as naturally occurring mutations, to create indelible markers that enables retrospective temporal ordering [3-8]. Using NSC-seq, a newly designed and validated multi-purpose single-cell CRISPR platform, we developed a molecular clock approach to record the timing of cellular events and clonality in vivo , while incorporating assigned cell state and lineage information. Using this approach, we uncovered precise timing of tissue-specific cell expansion during murine embryonic development and identified new intestinal epithelial progenitor states by their unique genetic histories. NSC-seq analysis of murine adenomas and single-cell multi-omic profiling of human precancers as part of the Human Tumor Atlas Network (HTAN), including 116 scRNA-seq datasets and clonal analysis of 418 human polyps, demonstrated the occurrence of polyancestral initiation in 15-30% of colonic precancers, revealing their origins from multiple normal founders. Thus, our multimodal framework augments existing single-cell analyses and lays the foundation for in vivo multimodal recording, enabling the tracking of lineage and temporal events during development and tumorigenesis.

15.
Anal Chim Acta ; 1227: 340270, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36089309

RESUMO

In this work, a porous capillary monolithic column was simply prepared by in situ thiol-alkyne click polymerization of dipentaerythritol hexakis (3-mercaptopropionate) and dimethyl dipropargylmalonate in fused-silica capillary. The capillary monolithic column shows excellent permeability, high porosity, and thoiether-rich groups, thereby, a high-efficient capacity for trace estrogens from complex samples are obtained via electron-donor-acceptor π-π interaction and hydrophobic interaction. The highest adsorption efficiency for estrogens is achieved at pH = 7.0 with a flow rate of 0.200 mL min-1. The superior adsorption capacities of the as-prepared capillary column for eight estrogens range from 0.092 mg m-1 to 0.31 mg m-1. A simple, reliable, and sensitive method for the determination of eight estrogens in biological and environmental samples is developed using the monolithic polymer as in-tube solid-phase microextraction coupled with ultrahigh performance liquid chromatography-tandem mass spectrometry (SPME-UPLC-MS/MS), and the total instrumental analysis time for the SPME-UPLC-MS/MS procedures was about 60 min per sample. The developed method shows a wide linear range (0.0500-5.00 µg L-1), and low limits of detection (5.34-9.63 ng L-1) for estrogens. The concentrations of estrogens in serum, urine, and pond water samples are found to be no more than 3.69, 0.741, and 1.04 µg L-1, respectively, and the satisfying recoveries for the eight estrogens range from 80.3% to 113% with relative standard deviations (n = 5) of 1.5-9.4%. The established method is highly potential for extraction and analysis of ultratrace target estrogens in complex matrices, such as biological and environmental samples.


Assuntos
Estrogênios , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Estrogênios/análise , Porosidade
16.
Front Oncol ; 12: 878920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600339

RESUMO

The tumor microenvironment plays a key role in the pathogenesis of colorectal tumors and contains various cell types including epithelial, immune, and mesenchymal cells. Characterization of the interactions between these cell types is necessary for revealing the complex nature of tumors. In this study, we used single-cell RNA-seq (scRNA-seq) to compare the tumor microenvironments between a mouse model of sporadic colorectal adenoma (Lrig1CreERT2/+;Apc2lox14/+) and a mouse model of inflammation-driven colorectal cancer induced by azoxymethane and dextran sodium sulfate (AOM/DSS). While both models develop tumors in the distal colon, we found that the two tumor types have distinct microenvironments. AOM/DSS tumors have an increased abundance of two populations of cancer-associated fibroblasts (CAFs) compared with APC tumors, and we revealed their divergent spatial association with tumor cells using multiplex immunofluorescence (MxIF) imaging. We also identified a unique squamous cell population in AOM/DSS tumors, whose origins were distinct from anal squamous epithelial cells. These cells were in higher proportions upon administration of a chemotherapy regimen of 5-Fluorouracil/Irinotecan. We used computational inference algorithms to predict cell-cell communication mediated by ligand-receptor interactions and downstream pathway activation, and identified potential mechanistic connections between CAFs and tumor cells, as well as CAFs and squamous epithelial cells. This study provides important preclinical insight into the microenvironment of two distinct models of colorectal tumors and reveals unique roles for CAFs and squamous epithelial cells in the AOM/DSS model of inflammation-driven cancer.

17.
Oncol Lett ; 23(6): 184, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35527783

RESUMO

Aerobic glycolysis plays a key role in cancer cell metabolism and contributes to tumorigenesis, including that of non-small cell lung cancer (NSCLC). Tanshinone IIA (Tan IIA), an active compound of Salvia miltiorrhiza, exhibits antitumor properties. Multiple mechanisms are involved in the antitumor action of Tan IIA in lung cancer, such as inhibiting cell growth, promoting cell apoptosis and influencing cellular metabolism. However, the effects of Tan IIA on NSCLC cells and its mechanisms of action remain unclear. The present study shows Tan IIA dose-dependently attenuated the growth of NSCLC cells and in vitro in a dose-dependent manner. Moreover, Tan IIA markedly decreased the ATP level, glucose uptake and lactate production in the NSCLC cells in vitro. Tan IIA also inhibited tumor growth in a xenograft model in vivo. Mechanically, Tan IIA treatment decreased sine oculis homeobox homolog 1 (SIX1) mRNA and protein levels, thus leading to the downregulation of pyruvate kinase isozyme M2, hexokinase 2 and lactate dehydrogenase A (LDHA) expression in A549 cells. SIX1 knockdown with small interfering-RNA inhibited glycolysis in NSCLC cells, suggesting that SIX1 plays a role in the antitumor effect of Tan IIA on NSCLC cells. More importantly, it was demonstrated that SIX1 expression was stimulated in patients with NSCLC and was positively correlated with the LDH serum level. Finally, SIX1 low expression levels predicted the poor prognosis of patients with NSCLC. In conclusion, the present study showed that Tan IIA functioned as an anti-glycolysis agent in NSCLC cells by downregulating SIX1 expression and inhibiting cell proliferation.

19.
Mol Ther ; 30(1): 105-118, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34174443

RESUMO

Myosin VI(MYO6) is an unconventional myosin that is vital for auditory and vestibular function. Pathogenic variants in the human MYO6 gene cause autosomal-dominant or -recessive forms of hearing loss. Effective treatments for Myo6 mutation causing hearing loss are limited. We studied whether adeno-associated virus (AAV)-PHP.eB vector-mediated in vivo delivery of Staphylococcus aureus Cas9 (SaCas9-KKH)-single-guide RNA (sgRNA) complexes could ameliorate hearing loss in a Myo6WT/C442Y mouse model that recapitulated the phenotypes of human patients. The in vivo editing efficiency of the AAV-SaCas9-KKH-Myo6-g2 system on Myo6C442Y is 4.05% on average in Myo6WT/C442Y mice, which was ∼17-fold greater than editing efficiency of Myo6WT alleles. Rescue of auditory function was observed up to 5 months post AAV-SaCas9-KKH-Myo6-g2 injection in Myo6WT/C442Y mice. Meanwhile, shorter latencies of auditory brainstem response (ABR) wave I, lower distortion product otoacoustic emission (DPOAE) thresholds, increased cell survival rates, more regular hair bundle morphology, and recovery of inward calcium levels were also observed in the AAV-SaCas9-KKH-Myo6-g2-treated ears compared to untreated ears. These findings provide further reference for in vivo genome editing as a therapeutic treatment for various semi-dominant forms of hearing loss and other semi-dominant diseases.


Assuntos
Edição de Genes , Perda Auditiva , Animais , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Audição , Perda Auditiva/genética , Perda Auditiva/terapia , Humanos , Camundongos , RNA Guia de Cinetoplastídeos
20.
Anal Bioanal Chem ; 414(4): 1553-1561, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34779902

RESUMO

In this study, reduced graphene oxide (rGO) hybridized high internal phase emulsions were developed and polymerized as porous carriers for aptamer (5'/5AmMC6/-AGT CCG TGG TAG GGC AGG TTG GGG TGA CT-3') modification to enrich human α-thrombin from serum. The structure and properties of the materials were confirmed by scanning electron microscope (SEM), Fourier transform infrared spectroscope (FT-IR), and X-ray photoelectron spectra (XPS). The adsorption ability and selectivity were studied and the thrombin was detected with liquid chromatography-mass spectrometry (LC-MS). The adsorption of thrombin onto the sorbent was achieved within 30 min and the desorption was realized using 5.0 mL of acetonitrile/water (80/20, v/v). The thrombin was quantified by LC-MS according to its characteristic peptide sequence of ELLESYIDGR.


Assuntos
Aptâmeros de Nucleotídeos/química , Grafite/química , Trombina/análise , Adsorção , Cromatografia Líquida , Humanos , Limite de Detecção , Espectrometria de Massas , Porosidade , Extração em Fase Sólida , Trombina/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA