Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(7): e1009752, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34288976

RESUMO

Highly immunogenic exotoxins are used as carrier proteins because they efficiently improve the immunogenicity of polysaccharides. However, their efficiency with protein antigens remains unclear. In the current study, the candidate antigen PA0833 from Pseudomonas aeruginosa was fused to the α-hemolysin mutant HlaH35A from Staphylococcus aureus to form a HlaH35A-PA0833 fusion protein (HPF). Immunization with HPF resulted in increased PA0833-specific antibody titers, higher protective efficacy, and decreased bacterial burden and pro-inflammatory cytokine secretion compared with PA0833 immunization alone. Using fluorescently labeled antigens to track antigen uptake and delivery, we found that HlaH35A fusion significantly improved antigen uptake in injected muscles and antigen delivery to draining lymph nodes. Both in vivo and in vitro studies demonstrated that the increased antigen uptake after immunization with HPF was mainly due to monocyte- and macrophage-dependent macropinocytosis, which was probably the result of HPF binding to ADAM10, the Hla host receptor. Furthermore, a transcriptome analysis showed that several immune signaling pathways were activated by HPF, shedding light on the mechanism whereby HlaH35A fusion improves immunogenicity. Finally, the improvement in immunogenicity by HlaH35A fusion was also confirmed with two other antigens, GlnH from Klebsiella pneumoniae and the model antigen OVA, indicating that HlaH35A could serve as a universal carrier protein to improve the immunogenicity of protein antigens.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas Hemolisinas/imunologia , Vacinas/imunologia , Células A549 , Animais , Exotoxinas/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Proteínas Recombinantes de Fusão/imunologia
2.
J Gastroenterol Hepatol ; 36(1): 196-203, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32537806

RESUMO

BACKGROUND AND AIM: Tubulointerstitial nephritis antigen-like 1 (TINAGL1), as a novel matricellular protein, has been demonstrated to participate in cancer progression, whereas the potential function of TINAGL1 in gastric cancer (GC) remains unknown. METHODS: The expression pattern of TINAGL1 in GC was examined by immunohistochemistry, ELISA, real-time polymerase chain reaction, and Western blot. Correlation between TINAGL1 and matrix metalloproteinases (MMPs) was analyzed by the GEPIA website and Kaplan-Meier plots database. The lentivirus-based TINAGL1 knockdown, CCK-8, and transwell assays were used to test the function of TINAGL1 in vitro. The role of TINAGL1 was confirmed by subcutaneous xenograft, abdominal dissemination, and lung metastasis model. Microarray experiments, ELISA, real-time polymerase chain reaction, and Western blot were used to identify molecular mechanism. RESULTS: TINAGL1 was increased in GC tumor tissues and associated with poor patient survival. Moreover, TINAGL1 significantly promoted GC cell proliferation and migration in vitro as well as facilitated GC tumor growth and metastasis in vivo. TINAGL1 expression in GC cells was accompanied with increasing MMPs including MMP2, MMP9, MMP11, MMP14, and MMP16. GEPIA database revealed that these MMPs were correlated with TINAGL1 in GC tumors and that the most highly expressed MMP was MMP2. Mechanically, TINAGL1 regulated MMP2 through the JNK signaling pathway activation. CONCLUSIONS: Our data highlight that TINAGL1 promotes GC growth and metastasis and regulates MMP2 expression, indicating that TINAGL1 may serve as a therapeutic target for GC.


Assuntos
Proliferação de Células/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Expressão Gênica/genética , Lipocalinas/genética , Lipocalinas/metabolismo , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Metástase Neoplásica/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Regulação para Cima/genética , Regulação para Cima/fisiologia , Animais , Linhagem Celular , Movimento Celular/genética , Modelos Animais de Doenças , Progressão da Doença , Proteínas da Matriz Extracelular/fisiologia , Feminino , Humanos , Lipocalinas/fisiologia , Camundongos Nus , Terapia de Alvo Molecular , Neoplasias Gástricas/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA