Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
BMC Psychiatry ; 24(1): 385, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773397

RESUMO

BACKGROUND: Patients with bipolar disorder (BD) show abnormalities in glucolipid metabolism and reproductive hormone levels, which are of concern in women with BD. This study was dedicated to investigating the glucolipid and reproductive hormone levels of female patients, and to preliminarily investigating their relationships with cognition. METHODS: A total of 58 unmedicated female BD patients, 61 stable-medicated female BD patients, and 63 healthy controls (HC) were recruited in this study. Serum glycolipid indexes and reproductive hormones were measured. Cognitive function was assessed using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Stroop Color-Word Test (Stroop test). RESULTS: Patients with BD showed significant cognitive impairment (p < 0.05), which was not affected by medication. Triglycerides (TG), luteinizing hormone (LH), and high-density lipoprotein cholesterol (HDL-c) were altered in stable-medicated BD patients. In addition, regression analysis showed that progesterone (PRGE) and prolactin (PRL) were negatively associated with cognitive performance in stable-medicated BD patients. CONCLUSIONS: Female BD patients may have cognitive deficits and abnormal levels of glycolipids and reproductive hormones. And abnormal levels of glycolipids and reproductive hormones may be associated with cognitive dysfunction in female BD patients.


Assuntos
Transtorno Bipolar , Disfunção Cognitiva , Glicolipídeos , Humanos , Feminino , Transtorno Bipolar/sangue , Transtorno Bipolar/complicações , Adulto , Glicolipídeos/sangue , Disfunção Cognitiva/sangue , Disfunção Cognitiva/fisiopatologia , Hormônio Luteinizante/sangue , Prolactina/sangue , Progesterona/sangue , Triglicerídeos/sangue , HDL-Colesterol/sangue , Pessoa de Meia-Idade , Testes Neuropsicológicos/estatística & dados numéricos
2.
J Affect Disord ; 350: 582-589, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246286

RESUMO

BACKGROUND: Psychiatric disorders are emerging as a serious public health hazard, influencing an increasing number of individuals worldwide. However, the effect of modifiable lifestyle factors on psychiatric disorders remains unclear. METHODS: Genome-wide association studies (GWAS) summary statistics were obtained mainly from Psychiatric Genomics Consortium and UK Biobank, with sample sizes varying between 10,000 and 1,200,000. The two-sample Mendelian randomization (MR) method was applied to investigate the causal associations between 45 lifestyle factors and 13 psychiatric disorders, and screen potential mediator proteins from 2992 candidate plasma proteins. We implemented a four-step framework with step-by-step screening incorporating two-step, univariable, and multivariable MR. RESULTS: We found causal effects of strenuous sports or other exercise on Tourette's syndrome (OR [95%CI]: 0.0047 [5.24E-04-0.042]); lifelong smoking index on attention-deficit hyperactivity disorder (10.53 [6.96-15.93]), anxiety disorders (3.44 [1.95-6.05]), bipolar disorder (BD) (2.25 [1.64-3.09]), BD II (2.89 [1.81-4.62]), and major depressive disorder (MDD) (2.47 [1.90-3.20]); and educational years on anorexia nervosa (AN) (1.47 [1.22-1.76]), and MDD (0.74 [0.66-0.83]). Five proteins were found to have causal associations with psychiatric disorders, namely ADH1B, GHDC, STOM, CD226, and TP63. STOM, a membrane protein deficient in the erythrocytes of hereditary stomatocytosis patients, may mediate the effect of educational attainment on AN. LIMITATIONS: The mechanisms underlying the effects of lifestyle factors on psychiatric disorders require further investigation. CONCLUSIONS: These findings could help assess the risk of psychiatric disorders based on lifestyle factors and also support lifestyle interventions as a prevention strategy for mental illness.


Assuntos
Anorexia Nervosa , Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Proteínas Sanguíneas/genética , Estilo de Vida
3.
J Cachexia Sarcopenia Muscle ; 15(1): 342-351, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38108096

RESUMO

BACKGROUND: Patients with overweight/obesity and type 2 diabetes are encouraged to lose weight, but not all losing weight gain better cardiovascular health, especially old adults. The change in skeletal muscle mass (SMM) could be the key that explains the heterogenous cardiovascular effects of weight loss. This study aims to assess whether the cardiovascular effects of weight loss vary for those gaining skeletal muscle along with weight loss. METHODS: The old adults with overweight/obesity and type 2 diabetes in the Look AHEAD study having muscle measurement from dual-energy X-ray absorptiometry were included. Based on the weight change (WC) and SMM change (SMMC) between baseline and the 4-year follow-up, participants were allocated into three groups-weight gain (WG) group, weight loss with muscle loss (WL-ML) group and weight loss with muscle gain (WL-MG) group. Cox proportional hazards regression was performed to evaluate the cardiovascular risk of those gaining or losing SMM with weight loss compared with those gaining weight. Among the participants with weight loss, the ratio of SMMC/WC was calculated, and the association of SMMC/WC with primary cardiovascular outcome was assessed. RESULTS: A total of 491 participants were included in the study with an average age of 64.56 ± 3.81 years old. A total of 47.0% were male and 49.9% were from the intensive lifestyle intervention arm. Based on their WC and SMMC, 43 were assigned to the WG group, 373 to the WL-ML group and 75 to the WL-MG group. Over a follow-up of almost 10 years, 97 participants encountered the primary endpoint. The WG group had the highest incidence of 25.59%, the WL-MG group had the lowest incidence of 9.33% and the WL-ML group had 21.18% (P = 0.040). In the fourth adjusted Cox model, the WL-MG group achieved significantly decreased odds of the primary endpoint compared with the WG group (hazard ratio [HR] 0.33, 95% confidence interval [CI] [0.12, 0.87], P = 0.026), whilst the WL-ML group did not (HR 0.91, 95% CI [0.47, 1.78], P = 0.670). Among the participants with weight loss, when SMMC/WC reached around 50%, this HR soared to approximately two-fold. CONCLUSIONS: The participants gaining SMM along with weight loss achieved the lowest odds of adverse cardiovascular events, whilst those who lost SMM along with weight loss had comparable cardiovascular risk with those gaining weight. The more muscle lost during weight loss, the greater the harm. The cardiovascular effects of weight loss were modulated by whether the participants gained SMM meanwhile losing weight.


Assuntos
Diabetes Mellitus Tipo 2 , Sobrepeso , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Sobrepeso/complicações , Diabetes Mellitus Tipo 2/complicações , Obesidade/complicações , Obesidade/epidemiologia , Redução de Peso , Aumento de Peso , Músculo Esquelético
4.
Stem Cells ; 41(12): 1101-1112, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37724396

RESUMO

Regenerative medicine mainly relies on heterologous transplantation, often hindered by sample availability and ethical issues. Furthermore, patients are required to take immunosuppressive medications to prevent adverse side effects. Stem cell-derived 3D-organoid culture has provided new alternatives for transplantation and regenerative medicine. Scholars have combined organoids with tissue engineering technology to improve reproducibility, the accuracy of constitution and throughput, and genetic correction to achieve a more personalized therapy. Here, we review the available applications of organoids in regenerative medicine and the current challenges concerning this field.


Assuntos
Organoides , Medicina Regenerativa , Humanos , Reprodutibilidade dos Testes , Engenharia Tecidual , Células-Tronco
5.
Int J Obes (Lond) ; 47(5): 399-405, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36899038

RESUMO

BACKGROUND: Obesity is major cause of cardiovascular diseases. Metabolically healthy obesity (MHO) may increase heart failure risk early in life, and may be reflected in impaired cardiac structure and function. Therefore, we aimed to examine the relationship between MHO in young adulthood and cardiac structure and function. METHODS: A total of 3066 participants from the Coronary Artery Risk Development in Young Adults (CARDIA) study were included, who completed echocardiography in young adulthood and middle age. The participants were grouped by obesity status (body mass index ≥30 kg/m2) and poor metabolic health (≥2 criteria for metabolic syndrome) into four metabolic phenotypes as follows: metabolically healthy non-obesity (MHN), MHO, metabolically unhealthy non-obesity (MUN), metabolically unhealthy obesity (MUO). The associations of the metabolic phenotypes (MHN serving as the reference) with left ventricular (LV) structure and function were evaluated using multiple linear regression models. RESULTS: At baseline, mean age was 25 years, 56.4% were women, and 44.7% were black. After a follow-up 25 years, MUN in young adulthood was associated with worse LV diastolic function (E/é ratio, ß [95% CI], 0.73 [0.18, 1.28]), worse systolic function (global longitudinal strain [GLS], 0.60 [0.08, 1.12]) in comparison with MHN. MHO and MUO were associated with LV hypertrophy (LV mass index, 7.49 g/m2 [4.63, 10.35]; 18.23 g/m2 [12.47, 23.99], respectively), worse diastolic function (E/é ratio, 0.67 [0.31, 1.02]; 1.47 [0.79, 2.14], respectively), and worse systolic function (GLS, 0.72 [0.38, 1.06]; 1.35 [0.64, 2.05], respectively) in comparison with MHN. These results were consistent in several sensitivity analyses. CONCLUSIONS: In this community-based cohort using data from the CARDIA study, obesity in young adulthood was significantly associated with LV hypertrophy, worse systolic and diastolic function regardless of metabolic status. Relationship of Baseline Metabolic Phenotypes with Young Adulthood and Midlife Cardiac Structure and Function. Adjusted for year 0 covariates: age, sex, race, educational level, smoking status, drinking status, and physical activity; metabolically healthy non-obesity was used as a reference category for comparison. † Criteria for metabolic syndrome are listed in Supplementary Table S6. MUN metabolically unhealthy non-obesity, MHO metabolically healthy obesity, LVMi left ventricular mass index, LVEF left ventricular ejection fraction, E/A early to late peak diastolic mitral flow velocity ratio, E/é mitral inflow velocity to early diastolic mitral annular velocity, CI confidence interval.


Assuntos
Síndrome Metabólica , Obesidade Metabolicamente Benigna , Feminino , Masculino , Humanos , Função Ventricular Esquerda , Volume Sistólico , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/complicações , Fatores de Risco , Obesidade/complicações , Obesidade/epidemiologia , Hipertrofia Ventricular Esquerda , Índice de Massa Corporal , Fenótipo
6.
Cancer Med ; 12(1): 760-788, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35668574

RESUMO

BACKGROUND: Glioma is one of the most malignant brain tumors and diseases. N6-methyladenosine modification (m6A) is the most abundant and prevalent internal chemical modification of mRNA and long non-coding RNAs (lncRNAs) in eukaryotes. Nevertheless, the correlated pathways and clinical utilization of m6A-related lncRNAs have not been fully evaluated in glioma. METHODS: Public RNA-sequencing and clinical annotation data were retrieved from TCGA, CGGA and GEO database. Differential expression analysis and univariate Cox regression analysis were performed to identify the m6A-related and differentially expressed lncRNAs with prognostic function (m6A-DELPF). The consensus clustering was performed to identify the expression pattern of m6A-DELPF. LASSO Cox regression analysis was performed to construct the lncRNA-based signature. The CIBERSORT and ESTIMATE algorithms were performed to analyze immune infiltration and tumor microenvironment, respectively. Immunotherapy sensitivity analysis was performed using data from TCIA. The small molecule drugs prediction analysis was performed using The Connectivity Map (CMap) database and STITCH database. A competing endogenous RNAs (ceRNA) network was constructed based on miRcode, miRDB, miRTarBase, TargetScan database. RESULTS: Two clusters (cluster1 and cluster2) were identified after unsupervised cluster analysis based on m6A-DELPF. Additionally, a 15-gene prognostic signature namely m6A-DELPFS was constructed. Analyses of epithelial-mesenchymal-transition score, tumor microenvironment, immune infiltration, clinical characterization analysis, and putative drug prediction were performed to confirm the clinical utility and efficacy of m6A-DELPFS. The potential mechanisms including tumor immune microenvironment of m6A-DELPF influence the initiation and progression of glioma. A clinically accessible nomogram was also constructed based on the m6A-DELPF and other survival-relevant clinical parameters. Two miRNAs and 114 mRNAs were identified as the downstream of seven m6A-related lncRNAs in a ceRNA network. CONCLUSION: Our present research confirmed the clinical value of m6A related lncRNAs and their high correlation with tumor immunity, tumor microenvironment, tumor mutation burden and drug sensitivity in glioma.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Glioma/genética , Glioma/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , MicroRNAs/genética , Adenosina/genética , Prognóstico , Microambiente Tumoral/genética
7.
Aging Dis ; 13(5): 1348-1364, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36186133

RESUMO

Iron is one of the most crucial elements in the human body. In recent years, a kind of programmed, non-apoptotic cell death closely related to iron metabolism-called ferroptosis- has aroused much interest among many scientists. Ferroptosis also interacts with other pathways involved in cell death including iron abnormality, the cystine/glutamate antiporter and lipid peroxidation. Together these pathological pathways exert great impacts on intracerebral hemorrhage (ICH), a lethal cerebrovascular disease with a high incidence rate and mortality rate. Furthermore, the ferroptosis also affects different brain cells (neurons and neuroglial cells) and different organelles (mitochondria and endoplasmic reticulum). Clinical treatments for ferroptosis in ICH have been closely investigated recently. This perspective provides a comprehensive summary of ferroptosis mechanisms after ICH and its interaction with other cell death patterns. Understanding the role of ferroptosis in ICH will open new windows for the future treatments and preventions for ICH and other intracerebral diseases.

8.
Cancer Med ; 11(13): 2711-2726, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35285582

RESUMO

Recent evidence suggested that the mRNA vaccine has been effective for many tumors, but its progress in gliomas was slow. In this study, we screened potential tumor antigens and suitable populations for mRNA vaccine to develop mRNA vaccine for glioma. We integrated the normalized RNA sequencing expression data and somatic mutation data from TCGA-GBM, TCGA-LGG, and CGGA datasets. Putative antigens in glioma were identified by selecting highly mutated genes with intimate correlation with clinical survival and immune infiltration. An unsupervised partition around medoids algorithm was utilized to stably cluster the patients into five different immune subtypes. Among them, IS1/2 was cold tumor with low tumor mutation burden (TMB), immunogenic cell death (ICDs), and immune checkpoints (ICPs), and IS4/5 was hot tumor with high TMB, ICDs, and ICPs. Monocle3 package was used to evaluate the immune status similarity and evolution in glioma, which identified cluster IS2A/2B within IS2 subtype to be more suitable vaccination receivers. Weighted gene co-expression network analysis identified five hub immune genes as the biomarkers of patients' immune status in glioma. In conclusion, NAT1, FRRS1, GTF2H2C, BRCA2, GRAP, NR5A2, ABCB4, ZNF90, ERCC6L, and ZNF813 are potential antigens suitable for glioma mRNA vaccine. IS1/2A/2B are suitable for mRNA vaccination.


Assuntos
Neoplasias Encefálicas , Glioma , Antígenos de Neoplasias/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Glioma/patologia , Humanos , Prognóstico , RNA Mensageiro/genética , Vacinas Sintéticas , Vacinas de mRNA
9.
Cancer Med ; 10(20): 7418-7439, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482648

RESUMO

BACKGROUND: Glioma is the most common central nervous system tumor in adults, and a considerable part of them are high-degree ones with high malignancy and poor prognosis. At present, the classification and treatment of glioma are mainly based on its histological characteristics, so studies at the molecular level are needed. METHODS: RNA-seq data from The Cancer Genome Atlas (TCGA) datasets (n = 703) and Chinese Glioma Genome Atlas (CGGA) were utilized to find out the differentially expressed RNA-binding proteins (RBPs) between normal cerebral tissue and glioma. A prediction system for the prognosis of glioma patients based on 11 RBPs was established and validated using uni- and multi-variate Cox regression analyses. STITCH and CMap databases were exploited to identify putative drugs and their targets. Single sample gene set enrichment analysis (ssGSEA) was used to calculate scores of specific immune-related gene sets. IC50 of over 20,000 compounds in 60 cancer cell lines was collected from the CellMiner database to test the drug sensitivity prediction value of the RBP-based signature. RESULTS: We established a reliable prediction system for the prognosis of glioma patients based on 11 RBPs including THOC3, LSM11, SARNP, PABPC1L2B, SMN1, BRCA1, ZC3H8, DZIP1L, HEXIM2, LARP4B, and ZC3H12B. These RBPs were primarily associated with ribosome and post-transcriptional regulation. RBP-based risk scores were closely related to immune cells and immune function. We also confirmed the potential of the signature to predict the drug sensitivity of currently approved or evaluated drugs. CONCLUSIONS: Differentially expressed RBPs in glioma can be used as a basis for prognosis prediction, new drugs screening and drug sensitivity prediction. As RBP-based glioma risk scores were associated with immunity, immunotherapy may become an important treatment for glioma in the future.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/genética , Glioma/tratamento farmacológico , Terapia de Imunossupressão/métodos , Proteínas de Ligação a RNA/metabolismo , Neoplasias Encefálicas/patologia , Glioma/patologia , Humanos , Prognóstico
10.
Front Cell Dev Biol ; 9: 652599, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249910

RESUMO

BACKGROUND: Glioma is the most common primary malignant brain tumor with significant mortality and morbidity. Ferroptosis, a novel form of programmed cell death (PCD), is critically involved in tumorigenesis, progression and metastatic processes. METHODS: We revealed the relationship between ferroptosis-related genes and glioma by analyzing the mRNA expression profiles from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), GSE16011, and the Repository of Molecular Brain Neoplasia Data (REMBRANDT) datasets. The least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to construct a ferroptosis-associated gene signature in the TCGA cohort. Glioma patients from the CGGA, GSE16011, and REMBRANDT cohorts were used to validate the efficacy of the signature. Receiver operating characteristic (ROC) curve analysis was applied to measure the predictive performance of the risk score for overall survival (OS). Univariate and multivariate Cox regression analyses of the 11-gene signature were performed to determine whether the ability of the prognostic signature in predicting OS was independent. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to identify the potential biological functions and pathways of the signature. Subsequently, we performed single sample gene set enrichment analysis (ssGSEA) to explore the correlation between risk scores and immune status. Finally, seven putative small molecule drugs were predicted by Connectivity Map. RESULTS: The 11-gene signature was identified to divide patients into two risk groups. ROC curve analysis indicated the 11-gene signature as a potential diagnostic factor in glioma patients. Multivariate Cox regression analyses showed that the risk score was an independent predictive factor for overall survival. Functional analysis revealed that genes were enriched in iron-related molecular functions and immune-related biological processes. The results of ssGSEA indicated that the 11-gene signature was correlated with the initiation and progression of glioma. The small molecule drugs we selected showed significant potential to be used as putative drugs. CONCLUSION: we identified a novel ferroptosis-related gene signature for prognostic prediction in glioma patients and revealed the relationship between ferroptosis-related genes and immune checkpoint molecules.

11.
Biology (Basel) ; 10(4)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917233

RESUMO

As a major threat factor for female health, breast cancer (BC) has garnered a lot of attention for its malignancy and diverse molecules participating in its carcinogenesis process. Among these complex carcinogenesis processes, cell proliferation, epithelial-to-mesenchymal transition (EMT), mesenchymal-to-epithelial transition (MET), and angiogenesis are the major causes for the occurrence of metastasis and chemoresistance which account for cancer malignancy. MicroRNAs packaged and secreted in exosomes are termed "exosomal microRNAs (miRNAs)". Nowadays, more researches have uncovered the roles of exosomal miRNAs played in BC metastasis. In this review, we recapitulated the dual actions of exosomal miRNAs exerted in the aggressiveness of BC by influencing migration, invasion, and distant metastasis. Next, we presented how exosomal miRNAs modify angiogenesis and stemness maintenance. Clinically, several exosomal miRNAs can govern the transformation between drug sensitivity and chemoresistance. Since the balance of the number and type of exosomal miRNAs is disturbed in pathological conditions, they are able to serve as instructive biomarkers for BC diagnosis and prognosis. More efforts are needed to connect the theoretical studies and clinical traits together. This review provides an outline of the pleiotropic impacts of exosomal miRNAs on BC metastasis and their clinical implications, paving the way for future personalized drugs.

12.
Front Endocrinol (Lausanne) ; 12: 573143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776905

RESUMO

Background: Astrocyte activation promotes glutamate accumulation and secretion of inflammatory factors, mainly responsible for epilepsy. Long noncoding RNA (lncRNA) X-inactive-specific transcript (XIST) regulates inflammation; however, the biological role and regulatory mechanism of XIST during astrocyte activation remain unclear. Methods: In the present study, rat epilepsy model and lipopolysaccharide (LPS)-treated CTX-TNA2 were established. XIST and miR-29c-3p expression were evaluated using quantitative real-time polymerase chain reaction. Nuclear factor of activated T cells 5 (NFAT5) was measured using western blot analysis. Interleukin (IL)-1ß, IL-6, tumor necrosis factor-α, and L-glutamate levels in the culture supernatants were assessed using enzyme-linked immunosorbent assay. The binding between XIST and miR-29c-3p and between miR-29c-3p and the 3'-UTR of NFAT5 was analyzed using dual-luciferase reporter, RNA-binding protein immunoprecipitation (RIP), and Biotin pull-down assay. The proliferation and apoptosis were evaluated using CCK8 and flow cytometry, respectively. Results: XIST expression and NFAT5 protein level was increased, whereas miR-29c-3p expression was decreased in the epilepsy rat model and LPS-treated CTX-TNA2 cells. Silenced XIST expression, miR-29c-3p overexpression, or silenced NFAT5 expression inhibited the secretion of IL-1ß, IL-6, and TNF-α and promoted glutamate transport in LPS-treated CTX-TNA2 cells. miR-29c-3p was the potential miRNA sponged by XIST. NFAT5 acted as a direct binding target of miR-29c-3p. Silenced miR-29c-3p expression or NFAT5 overexpression reversed the effect of silenced XIST expression on LPS-treated CTX-TNA2.XIST and miR-29c-3p treatment does not affect NFAT5 mRNA expression, but affects NFAT5 protein level. Furthermore, underexpressed XIST or overexpressed miR-29c-3p in LPS-stimulated CTX-TNA2 can attenuate neuronal apoptosis induced by LPS-stimulated CTX-TNA2. Conclusion: LncRNA XIST promotes the secretion of inflammatory cytokines in LPS- treated CTX-TNA2 via sponging miR-29c-3p and regulating NFAT5 expression.


Assuntos
Astrócitos/metabolismo , Citocinas/metabolismo , RNA Longo não Codificante/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Células Cultivadas , Modelos Animais de Doenças , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Neurol Sci ; 42(4): 1631-1635, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33433757

RESUMO

Lynch syndrome (LS) is an autosomal dominant inherited disease caused by germline mutations in DNA mismatch repair (MMR) genes, including MLH1, MSH2, MSH6, and PMS2, which predisposes patients to various malignant neoplasms. Previous studies showed that MLH1, MSH2, MSH6, and PMS2 mutation in LS were associated with an elevated risk of colorectal, gastric, endometria, ovarian, and other cancers among family members. Patients of these kinds of cancers had high incidence of synchronous and metasynchronus. We describe the case of a 34-year-old female patient with 50 days of sudden dizziness and left limb weakness, whose head CT scan showed large infarction in the right frontal temporal parietal lobe and basal ganglia area. Imaging examinations and pathological biopsy indicated high-grade serous carcinoma (HGSC) IIIA1 of the right ovary. In addition, a novel frame-shift mutation in the MLH1 gene (c.1621dupG, p.A541Gfs*16) was found in the genetic panel sequence. It may render declining of MLH1 protein and also associate with the patient's progressive clinical manifestations of multiple systems. Therefore, the timely use of prenatal diagnosis to prevent unnecessary new cases of this severe genetic disease is available.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Proteína 1 Homóloga a MutL , Acidente Vascular Cerebral , Adulto , Neoplasias Colorretais Hereditárias sem Polipose/complicações , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico por imagem , Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA , Feminino , Predisposição Genética para Doença , Humanos , Proteína 1 Homóloga a MutL/genética , Mutação
15.
Neurosci Bull ; 36(4): 333-345, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31823302

RESUMO

Characterizing the three-dimensional (3D) morphological alterations of microvessels under both normal and seizure conditions is crucial for a better understanding of epilepsy. However, conventional imaging techniques cannot detect microvessels on micron/sub-micron scales without angiography. In this study, synchrotron radiation (SR)-based X-ray in-line phase-contrast imaging (ILPCI) and quantitative 3D characterization were used to acquire high-resolution, high-contrast images of rat brain tissue under both normal and seizure conditions. The number of blood microvessels was markedly increased on days 1 and 14, but decreased on day 60 after seizures. The surface area, diameter distribution, mean tortuosity, and number of bifurcations and network segments also showed similar trends. These pathological changes were confirmed by histological tests. Thus, SR-based ILPCI provides systematic and detailed views of cerebrovascular anatomy at the micron level without using contrast-enhancing agents. This holds considerable promise for better diagnosis and understanding of the pathogenesis and development of epilepsy.


Assuntos
Epilepsia , Hipocampo/diagnóstico por imagem , Síncrotrons , Animais , Epilepsia/diagnóstico por imagem , Hipocampo/patologia , Imageamento Tridimensional , Masculino , Ratos , Ratos Sprague-Dawley
16.
J Synchrotron Radiat ; 26(Pt 5): 1742-1750, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31490166

RESUMO

Thorough investigation of the three-dimensional (3D) configuration of the vasculature of mouse brain remains technologically difficult because of its complex anatomical structure. In this study, a systematic analysis is developed to visualize the 3D angioarchitecture of mouse brain at ultrahigh resolution using synchrotron-radiation-based propagation phase-contrast imaging. This method provides detailed restoration of the intricate brain microvascular network in a precise 3D manner. In addition to depicting the delicate 3D arrangements of the vascular network, 3D virtual micro-endoscopy is also innovatively performed to visualize randomly a selected vessel within the brain for both external 3D micro-imaging and endoscopic visualization of any targeted microvessels, which improves the understanding of the intrinsic properties of the mouse brain angioarchitecture. Based on these data, hierarchical visualization has been established and a systematic assessment on the 3D configuration of the mouse brain microvascular network has been achieved at high resolution which will aid in advancing the understanding of the role of vasculature in the perspective of structure and function in depth. This holds great promise for wider application in various models of neurovascular diseases.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Microscopia de Contraste de Fase/métodos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Síncrotrons
17.
J Synchrotron Radiat ; 26(Pt 3): 607-618, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074423

RESUMO

There has been increasing interest in using high-resolution micro-tomography to investigate the morphology of neurovascular networks in the central nervous system, which remain difficult to characterize due to their microscopic size as well as their delicate and complex 3D structure. Synchrotron radiation X-ray imaging, which has emerged as a cutting-edge imaging technology with a high spatial resolution, provides a novel platform for the non-destructive imaging of microvasculature networks at a sub-micrometre scale. When coupled with computed tomography, this technique allows the characterization of the 3D morphology of vasculature. The current review focuses on recent progress in developing synchrotron radiation methodology and its application in probing neurovascular networks, especially the pathological changes associated with vascular abnormalities in various model systems. Furthermore, this tool represents a powerful imaging modality that improves our understanding of the complex biological interactions between vascular function and neuronal activity in both physiological and pathological states.


Assuntos
Sistema Nervoso Central/irrigação sanguínea , Microvasos/diagnóstico por imagem , Síncrotrons , Microtomografia por Raio-X/métodos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA