Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Turk J Gastroenterol ; 35(6): 497-504, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-39101697

RESUMO

Background/Aims: Recent studies revealed that patients with persistent aminotransferase elevations after antiviral treatment had higher risk of hepatic events; yet its underlying causes remain unclear. Our study aimed to investigate the etiologies of persistent aminotransferase elevations in patients treated with nucleos(t)ide analogs (NAs). Materials and Methods: A retrospective study was conducted on chronic hepatitis B (CHB) patients who had been receiving NA treatment for over a year and had an aminotransferase level greater than 40 IU/mL (more than twice, with a 3-month interval) and subsequently underwent a liver biopsy. Results: The study group included 46 patients (34 males) with a mean age of 44.8 ± 20.3 years (range: 24-71 years).The average dura- tion of NA therapy was 3.7 years (1.1-10.6 years). The etiologies of persistant transaminase elevation were categorized into 4 groups: patients with low hepatitis B virus (HBV) viral load (LVL, n = 11); concurrent non-alcoholic fatty liver disease (NAFLD, n = 12); concurrent other liver diseases (OLD, n = 12); and unknown liver dysfunction (ULD, n = 11). The proportion of G ≥ 2 inflammation was significantly higher in the LVL group (90.9%) compared to NAFLD (33.3%), OLD (50%), and ULD (27.2%) groups (P = .012). The hepatitis B e-antigen (HBeAg)-positive group exhibited a younger age (34.5 ± 10.2 vs. 48.1 ± 9.4 years, P < .001), a lower proportion of fibrosis F ≥ 2 (36.3% vs. 77.1%, P = .012), and a higher prevalence of detectable HBV DNA (54.5% vs.14.2%, P = .00632) compared to the HBeAg-negative group. Conclusion: The etiology of persistent aminotransferase elevations in CHB patients undergoing NAs treatment warrants investigation. Besides the commonly observed NAFLD and low HBV viral load, concurrent presence of other liver diseases requires elucidation.The proportion of G≥2 inflammation was higher in the LVL group.


Assuntos
Alanina Transaminase , Antivirais , Hepatite B Crônica , Carga Viral , Humanos , Masculino , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/complicações , Hepatite B Crônica/sangue , Hepatite B Crônica/virologia , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Antivirais/uso terapêutico , Antivirais/efeitos adversos , Idoso , Adulto Jovem , Alanina Transaminase/sangue , Vírus da Hepatite B , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica , Nucleosídeos/uso terapêutico
2.
Br J Pharmacol ; 181(8): 1221-1237, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37926864

RESUMO

BACKGROUND AND PURPOSE: The mammalian target of rapamycin (mTOR) pathway plays critical roles in intrinsic chemoresistance by regulating Fanconi anaemia complementation group D2 (FANCD2) expression. However, the mechanisms by which mTOR regulates FANCD2 expression and related inhibitors are not clearly elucidated. Extracts of Centipeda minima (C. minima) showed promising chemosensitizing effects by inhibiting FANCD2 activity. Here, we have aimed to identify the bioactive chemosensitizer in C. minima extracts and elucidate its underlying mechanism. EXPERIMENTAL APPROACH: The chemosensitizing effects of arnicolide C (ArC), a bioactive compound in C. minima, on non-small cell lung cancer (NSCLC) were investigated using immunoblotting, immunofluorescence, flow cytometry, the comet assay, small interfering RNA (siRNA) transfection and animal models. The online SynergyFinder software was used to determine the synergistic effects of ArC and chemotherapeutic drugs on NSCLC cells. KEY RESULTS: ArC had synergistic cytotoxic effects with DNA cross-linking drugs such as cisplatin and mitomycin C in NSCLC cells. ArC treatment markedly decreased FANCD2 expression in NSCLC cells, thus attenuating cisplatin-induced FANCD2 nuclear foci formation, leading to DNA damage and apoptosis. ArC inhibited the mTOR pathway and attenuated mTOR-mediated expression of E2F1, a critical transcription factor of FANCD2. Co-administration of ArC and cisplatin exerted synergistic anticancer effects in the A549 xenograft mouse model by suppressing mTOR/FANCD2 signalling in tumour tissues. CONCLUSION AND IMPLICATIONS: ArC suppressed DNA cross-linking drug-induced DNA damage response by inhibiting the mTOR/E2F1/FANCD2 signalling axis, serving as a chemosensitizing agent. This provides insight into the anticancer mechanisms of ArC and offers a potential combinatorial anticancer therapeutic strategy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Anemia de Fanconi , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Cisplatino/farmacologia , Neoplasias Pulmonares/patologia , Serina-Treonina Quinases TOR/metabolismo , DNA , Mamíferos/metabolismo , Fator de Transcrição E2F1/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo
3.
Mol Nutr Food Res ; 67(18): e2300061, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37436082

RESUMO

SCOPE: This study aims to investigate the anticancer properties of Citrus grandis 'Tomentosa' (CGT) in non-small cell lung cancer (NSCLC). METHODS AND RESULTS: The ethanol extract of CGT (CGTE) is prepared by using anhydrous ethanol and analyzed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), revealing that the main chemical components in CGTE are flavonoids and coumarins, such as naringin, rhoifolin, apigenin, bergaptol, and osthole. CGTE at concentrations without inducing cell death significantly inhibits cell proliferation via inducing cell cycle G1 phase arrest by MTT, colony formation, and flow cytometry assays, implying that CGT has anticancer potential. CGTE markedly inhibits the activity of Skp2-SCF E3 ubiquitin ligase, decreases the protein level of Skp2, and promotes the accumulation of p27 by co-immunoprecipitation (co-IP) and in vivo ubiquitination assay; whereas Skp2 overexpression rescues the effects of CGTE in NSCLC cells. In subcutaneous LLC allograft and A549 xenograft mouse models, CGTE, without causing obvious side effects in mice, significantly inhibits lung tumor growth by targeting the Skp2/p27 signaling pathway. CONCLUSION: These findings demonstrate that CGTE efficiently inhibits NSCLC proliferation both in vitro and in vivo by targeting the Skp2/p27 signaling pathway, suggesting that CGTE may serve as a therapeutic candidate for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Citrus , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Citrus/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Proteínas Ligases SKP Culina F-Box , Inibidor de Quinase Dependente de Ciclina p27/metabolismo
4.
Front Cell Dev Biol ; 9: 640786, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150748

RESUMO

Activation of inflammasomes has been reported in human pancreatic adenocarcinoma (PAAD); however, the expression pattern and functional role of inflammasome-related proteins in PAAD have yet to be identified. In this study, we systemically examined the expression and role of different inflammasome proteins by retrieving human expression data. Several genes were found to be differentially expressed; however, only interferon-inducible protein 16 (IFI16) expression was found to be adversely correlated with the overall survival of PAAD patients. Overexpression of IFI16 significantly promoted tumor growth, increased tumor size and weight in the experimental PAAD model of mice, and specifically increased the population of tumor-associated macrophages (TAMs) in the tumor microenvironment. Depletion of TAMs by injection of liposome clodronate attenuated the IFI16 overexpression-induced tumor growth in PAAD. In vitro treatment of conditioned medium from IFI16-overexpressing PAAD cells induced maturation, proliferation, and migration of bone marrow-derived monocytes, suggesting that IFI16 overexpression resulted in cytokine secretion that favored the TAM population. Further analysis suggested that IFI16 overexpression activated inflammasomes, thereby increasing the release of IL-1ß. Neutralization of IL-1ß attenuated TAM maturation, proliferation, and migration induced by the conditioned medium from IFI16-overexpressing PAAD cells. Additionally, knockdown of IFI16 could significantly potentiate gemcitabine treatment in PAAD, which may be associated with the reduced infiltration of TAMs in the tumor microenvironment. The findings of our study shed light on the role of IFI16 as a potential therapeutic target for PAAD.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32774428

RESUMO

Cynanchum paniculatum Radix, known as Xuchangqing in Chinese, is commonly prescribed in Chinese Medicine (CM) for the treatment of various inflammatory diseases. The anti-inflammatory property of Cynanchum paniculatum can be traced from its wind-damp removing, collaterals' obstruction relieving, and toxins counteracting effects as folk medicine in CM. This paper systematically reviewed the research advancement of the pharmacological effects of Cynanchum paniculatum among a variety of human diseases, including diseases of the respiratory, circulatory, digestive, urogenital, hematopoietic, endocrine and metabolomic, neurological, skeletal, and rheumatological systems and malignant diseases. This review aims to link the long history of clinical applications of Cynanchum paniculatum in CM with recent biomedical investigations. The major bioactive chemical compositions of Cynanchum paniculatum and their associated action mechanism unveiled by biomedical investigations as well as the present clinical applications and future perspectives are discussed. The major focuses of this review are on the diverse mechanisms of Cynanchum paniculatum and the role of its active components in inflammatory diseases.

6.
J Cell Sci ; 127(Pt 8): 1792-804, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24522183

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a human progeroid disease caused by a point mutation on the LMNA gene. We reported previously that the accumulation of the nuclear envelope protein SUN1 contributes to HGPS nuclear aberrancies. However, the mechanism by which interactions between mutant lamin A (also known as progerin or LAΔ50) and SUN1 produce HGPS cellular phenotypes requires further elucidation. Using light and electron microscopy, this study demonstrated that SUN1 contributes to progerin-elicited structural changes in the nuclear envelope and the endoplasmic reticulum (ER) network. We further identified two domains through which full-length lamin A associates with SUN1, and determined that the farnesylated cysteine within the CaaX motif of lamin A has a stronger affinity for SUN1 than does the lamin A region containing amino acids 607 to 656. Farnesylation of progerin enhanced its interaction with SUN1 and reduced SUN1 mobility, thereby promoting the aberrant recruitment of progerin to the ER membrane during postmitotic assembly of the nuclear envelope, resulting in the accumulation of SUN1 over consecutive cellular divisions. These results indicate that the dysregulated interaction of SUN1 and progerin in the ER during nuclear envelope reformation determines the progression of HGPS.


Assuntos
Retículo Endoplasmático/metabolismo , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Progéria/patologia , Retículo Endoplasmático/patologia , Fibroblastos/metabolismo , Células HeLa , Humanos , Lamina Tipo A/genética , Mitose , Membrana Nuclear/patologia , Mutação Puntual , Prenilação , Progéria/genética , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Pele/patologia
7.
Proc Natl Acad Sci U S A ; 110(19): E1779-87, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23610398

RESUMO

The overexpression of Aurora kinases in multiple tumors makes these kinases appealing targets for the development of anticancer therapies. This study identified two small molecules with a furanopyrimidine core, IBPR001 and IBPR002, that target Aurora kinases and induce a DFG conformation change at the ATP site of Aurora A. Our results demonstrate the high potency of the IBPR compounds in reducing tumorigenesis in a colorectal cancer xenograft model in athymic nude mice. Human hepatoma up-regulated protein (HURP) is a substrate of Aurora kinase A, which plays a crucial role in the stabilization of kinetochore fibers. This study used the IBPR compounds as well as MLN8237, a proven Aurora A inhibitor, as chemical probes to investigate the molecular role of HURP in mitotic spindle formation. These compounds effectively eliminated HURP phosphorylation, thereby revealing the coexistence and continuous cycling of HURP between unphosphorylated and phosphorylated forms that are associated, respectively, with microtubules emanating from centrosomes and kinetochores. Furthermore, these compounds demonstrate a spatial hierarchical preference for HURP in the attachment of microtubules extending from the mother to the daughter centrosome. The finding of inequality in the centrosomal microtubules revealed by these small molecules provides a versatile tool for the discovery of new cell-division molecules for the development of antitumor drugs.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrossomo/ultraestrutura , Inibidores Enzimáticos/farmacologia , Cinetocoros/ultraestrutura , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Aurora Quinase A , Aurora Quinases , Carcinoma Hepatocelular/metabolismo , Ciclo Celular , Cristalografia por Raios X , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Nus , Mitose , Transplante de Neoplasias , Fosforilação , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA