Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
ACS Nano ; 18(20): 12716-12736, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38718220

RESUMO

Mesoporous silica nanoparticles (MSNs) represent a promising avenue for targeted brain tumor therapy. However, the blood-brain barrier (BBB) often presents a formidable obstacle to efficient drug delivery. This study introduces a ligand-free PEGylated MSN variant (RMSN25-PEG-TA) with a 25 nm size and a slight positive charge, which exhibits superior BBB penetration. Utilizing two-photon imaging, RMSN25-PEG-TA particles remained in circulation for over 24 h, indicating significant traversal beyond the cerebrovascular realm. Importantly, DOX@RMSN25-PEG-TA, our MSN loaded with doxorubicin (DOX), harnessed the enhanced permeability and retention (EPR) effect to achieve a 6-fold increase in brain accumulation compared to free DOX. In vivo evaluations confirmed the potent inhibition of orthotopic glioma growth by DOX@RMSN25-PEG-TA, extending survival rates in spontaneous brain tumor models by over 28% and offering an improved biosafety profile. Advanced LC-MS/MS investigations unveiled a distinctive protein corona surrounding RMSN25-PEG-TA, suggesting proteins such as apolipoprotein E and albumin could play pivotal roles in enabling its BBB penetration. Our results underscore the potential of ligand-free MSNs in treating brain tumors, which supports the development of future drug-nanoparticle design paradigms.


Assuntos
Barreira Hematoencefálica , Doxorrubicina , Sistemas de Liberação de Medicamentos , Nanopartículas , Dióxido de Silício , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Dióxido de Silício/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Nanopartículas/química , Animais , Porosidade , Camundongos , Humanos , Polietilenoglicóis/química , Portadores de Fármacos/química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Tamanho da Partícula , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Ligantes , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administração & dosagem
2.
BMC Cancer ; 24(1): 578, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734620

RESUMO

OBJECTIVE: This study aims to develop a nomogram integrating inflammation (NLR), Prognostic Nutritional Index (PNI), and EBV DNA (tumor burden) to achieve personalized treatment and prediction for stage IVA NPC. Furthermore, it endeavors to pinpoint specific subgroups that may derive significant benefits from S-1 adjuvant chemotherapy. METHODS: A total of 834 patients diagnosed with stage IVA NPC were enrolled in this study and randomly allocated into training and validation cohorts. Multivariate Cox analyses were conducted to identify independent prognostic factors for constructing the nomogram. The predictive and clinical utility of the nomogram was assessed through measures including the AUC, calibration curve, DCA, and C-indexes. IPTW was employed to balance baseline characteristics across the population. Kaplan-Meier analysis and log-rank tests were utilized to evaluate the prognostic value. RESULTS: In our study, we examined the clinical features of 557 individuals from the training cohort and 277 from the validation cohort. The median follow-up period was 50.1 and 49.7 months, respectively. For the overall cohort, the median follow-up duration was 53.8 months. The training and validation sets showed 3-year OS rates of 87.7% and 82.5%, respectively. Meanwhile, the 3-year DMFS rates were 95.9% and 84.3%, respectively. We created a nomogram that combined PNI, NRI, and EBV DNA, resulting in high prediction accuracy. Risk stratification demonstrated substantial variations in DMFS and OS between the high and low risk groups. Patients in the high-risk group benefited significantly from the IC + CCRT + S-1 treatment. In contrast, IC + CCRT demonstrated non-inferior 3-year DMFS and OS compared to IC + CCRT + S-1 in the low-risk population, indicating the possibility of reducing treatment intensity. CONCLUSIONS: In conclusion, our nomogram integrating NLR, PNI, and EBV DNA offers precise prognostication for stage IVA NPC. S-1 adjuvant chemotherapy provides notable benefits for high-risk patients, while treatment intensity reduction may be feasible for low-risk individuals.


Assuntos
Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Estadiamento de Neoplasias , Nomogramas , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/mortalidade , Carcinoma Nasofaríngeo/patologia , Quimioterapia Adjuvante/métodos , Prognóstico , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/mortalidade , Neoplasias Nasofaríngeas/patologia , Inflamação , Adulto , Avaliação Nutricional , Herpesvirus Humano 4/isolamento & purificação , Tegafur/uso terapêutico , Tegafur/administração & dosagem , DNA Viral , Combinação de Medicamentos , Ácido Oxônico/uso terapêutico , Ácido Oxônico/administração & dosagem , Idoso , Estimativa de Kaplan-Meier
3.
Sci Rep ; 14(1): 7686, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561379

RESUMO

Parotid mucoepidermoid carcinoma (P-MEC) is a significant histopathological subtype of salivary gland cancer with inherent heterogeneity and complexity. Existing clinical models inadequately offer personalized treatment options for patients. In response, we assessed the efficacy of four machine learning algorithms vis-à-vis traditional analysis in forecasting the overall survival (OS) of P-MEC patients. Using the SEER database, we analyzed data from 882 postoperative P-MEC patients (stages I-IVA). Single-factor Cox regression and four machine learning techniques (random forest, LASSO, XGBoost, best subset regression) were employed for variable selection. The optimal model was derived via stepwise backward regression, Akaike Information Criterion (AIC), and Area Under the Curve (AUC). Bootstrap resampling facilitated internal validation, while prediction accuracy was gauged through C-index, time-dependent ROC curve, and calibration curve. The model's clinical relevance was ascertained using decision curve analysis (DCA). The study found 3-, 5-, and 10-year OS rates of 0.887, 0.841, and 0.753, respectively. XGBoost, BSR, and LASSO stood out in predictive efficacy, identifying seven key prognostic factors including age, pathological grade, T stage, N stage, radiation therapy, chemotherapy, and marital status. A subsequent nomogram revealed a C-index of 0.8499 (3-year), 0.8557 (5-year), and 0.8375 (10-year) and AUC values of 0.8670, 0.8879, and 0.8767, respectively. The model also highlighted the clinical significance of postoperative radiotherapy across varying risk levels. Our prognostic model, grounded in machine learning, surpasses traditional models in prediction and offer superior visualization of variable importance.


Assuntos
Carcinoma Mucoepidermoide , Neoplasias Parotídeas , Humanos , Nomogramas , Carcinoma Mucoepidermoide/cirurgia , Neoplasias Parotídeas/cirurgia , Algoritmos , Aprendizado de Máquina
4.
Cytotherapy ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38625072

RESUMO

BACKGROUND AIMS: Chimeric antigen receptor-T (CAR-T) cells have exhibited remarkable efficacy in treating refractory or relapsed multiple myeloma (R/R MM). Although obesity has a favorable value in enhancing the response to immunotherapy, less is known about its predictive value regarding the efficacy and prognosis of CAR-T cell immunotherapy. METHODS: We conducted a retrospective study of 111 patients with R/R MM who underwent CAR-T cell treatment. Using the body mass index (BMI) classification, the patients were divided into a normal-weight group (73/111) and an overweight group (38/111). We investigated the effect of BMI on CAR-T cell therapy outcomes in patients with R/R MM. RESULTS: The objective remission rates after CAR-T cell infusion were 94.7% and 89.0% in the overweight and normal-weight groups, respectively. The duration of response and overall survival were not significant difference between BMI groups. Compared to normal-weight patients, overweight patients had an improved median progression-free survival. There was no significant difference in cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome between the subgroups. In terms of hematological toxicity, the erythrocyte, hemoglobin, platelet, leukocyte and neutrophil recovery was accelerated in the overweight group. Fewer patients in the overweight group displayed moderate percent CD4 and CD4/CD8 ratios compared to the normal-weight group. Furthermore, the percent CD4 ratios were positively correlated with the levels of cytokines [interleukin-2 (IL-2) (day 14), interferon gamma (IFN-γ) (day 7) and tumor necrosis factor alpha (TNF-α) (days 14 and 21)] after cells infusion. On the other hand, BMI was positively associated with the levels of IFN-γ (day 7) and TNF-α (days 14 and 21) after CAR-T cells infusion. CONCLUSIONS: Overall, this study highlights the potential beneficial effect of a higher BMI on CAR-T cell therapy outcomes.

5.
Oncologist ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625619

RESUMO

BACKGROUND: Few studies have assessed the comprehensive associations among comorbid diseases in elderly patients with nasopharyngeal carcinoma (NPC). This study sought to identify potential comorbidity patterns and explore the relationship of comorbidity patterns with the mortality risk in elderly patients with NPC. METHODS: A total of 452 elderly patients with NPC were enrolled in the study. The network analysis and latent class analysis were applied to mine comorbidity patterns. Propensity score matching was used for adjusting confounders. A restricted cubic spline model was used to analyze the nonlinear association between age and the risk of all-cause mortality. RESULTS: We identified 2 comorbidity patterns, metabolic disease-related comorbidity (MDRC) and organ disease-related comorbidity (ODRC) in elderly patients with NPC. Patients in MDRC showed a significantly higher risk of all-cause mortality (71.41% vs 87.97%, HR 1.819 [95% CI, 1.106-2.994], P = .031) and locoregional relapse (68.73% vs 80.88%, HR 1.689 [95% CI, 1.055-2.704], P = .042). Moreover, in patients with MDRC pattern, we observed an intriguing inverted S-shaped relationship between age and all-cause mortality among patients aged 68 years and older. The risk of mortality up perpetually with age increasing in ODRC group, specifically within the age range of 68-77 years (HR 4.371, 1.958-9.757). CONCLUSION: Our study shed light on the potential comorbidity patterns in elderly patients with NPC, thereby providing valuable insights into the development of comprehensive health management strategies for this specific population.

6.
Heliyon ; 10(7): e29098, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601662

RESUMO

Objectives: Our previous studies revealed the significant roles of FK506-binding protein 4 (FKBP4) in tumorigenesis, however, there has been no pan-cancer analysis of FKBP4. Using bioinformatics, the current study reported the expression and prognostic role of FKBP4, and the correlation between FKBP4 and clinicopathological parameters, methylation, molecular network, immunological traits and drug sensitivity. Methods: RNA sequencing data, somatic mutation, and related clinical information were obtained from TCGA using UCSC Xena. The association between FKBP4 expression and clinical features was assessed using TISIDB. The relationships between FKBP4 expression and tumour stage, OS, DSS, DFS, and PFS were analysed using univariate cox regression analysis. The radar plots for TMB and MSI were obtained using "Fmsb" R package. UALCAN was used to explore the effect of FKBP4 methylation on tumour and normal samples. CBioportal was used to analyse copy number mutations in FKBP4 Gene expression and drug sensitivity data were downloaded from the CellMiner database. GO analysis was performed for the high and the low expression of FKBP4 compared with the median level of FKBP4 using clusterProfiler4.0. Results: FKBP4 expression is significantly upregulated in various types of cancers. Cox regression analysis showed that high FKBP4 levels were correlated with poor OS, DSS, DFS, and PFS in most patients with cancer. Methylation of FKBP4 DNA was upregulated in most cancers, and FKBP4 expression is positively associated with transmethylase expression. FKBP4 and its copy were significantly associated with the expression of immune-infiltrating cells, immune checkpoint genes, immune modulators, TMB, MMR, and MSI. FKBP4 expression levels significantly correlated with 16 different drug sensitivities (all p < 0.05). Conclusions: Our pan-cancer bioinformatic analysis revealed a potential mechanism underlying the effects of FKBP4 on the prognosis and progression of various cancers.

7.
Clin Exp Med ; 24(1): 87, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662121

RESUMO

Chimeric antigen receptor T-cell (CAR-T) therapy is effective in the treatment of relapsed/refractory acute B-lymphoblastic leukemia (R/R B-ALL); however, patients who receive CAR-T therapy are predisposed to infections, with considerable detrimental effects on long-term survival rates and the quality of life of patients. This study retrospectively analyzed infectious complications in 79 pediatric patients with R/R B-ALL treated with CAR-T cells at our institution. Overall, 53 patients developed 88 infections. Nine patients experienced nine infections during lymphodepletion chemotherapy, 35 experienced 41 infections during the early phase (days 0-+ 30 after infusion), and 29 experienced 38 infections during the late phase (day + 31-+ 90 after infusion). Pathogens were identified in 31 infections, including 23 bacteria, seven viruses, and one fungus. Four patients were admitted to the intensive care unit for infection and one died. In a univariate analysis, there were ten factors associated with infection, including tumor load, lymphodepleting chemotherapy, neutrophil deficiency and lymphocyte reduction, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), etc. In a multivariate analysis, CRS ≥ grade 3 was identified as a risk factor for infection (hazard ratio = 2.41, 95% confidence interval: 1.08-5.36, P = 0.031). Therefore, actively reducing the CRS grade may decrease the risk of infection and improve the long-term quality of life of these patients.


Assuntos
Imunoterapia Adotiva , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Antígenos CD19/imunologia , Imunoterapia Adotiva/efeitos adversos , Infecções/etiologia , Infecções/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos Quiméricos/imunologia , Estudos Retrospectivos
8.
Mol Med ; 30(1): 54, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649802

RESUMO

BACKGROUND: Bleomycin, a potent antitumor agent, is limited in clinical use due to the potential for fatal pulmonary toxicity. The accelerated DNA damage and senescence in alveolar epithelial cells (AECs) is considered a key factor in the development of lung pathology. Understanding the mechanisms for bleomycin-induced lung injury is crucial for mitigating its adverse effects. METHODS: Human lung epithelial (A549) cells were exposed to bleomycin and subsequently assessed for cellular senescence, DNA damage, and double-strand break (DSB) repair. The impact of Rad51 overexpression on DSB repair and senescence in AECs was evaluated in vitro. Additionally, bleomycin was intratracheally administered in C57BL/6 mice to establish a pulmonary fibrosis model. RESULTS: Bleomycin exposure induced dose- and time-dependent accumulation of senescence hallmarks and DNA lesions in AECs. These effects are probably due to the inhibition of Rad51 expression, consequently suppressing homologous recombination (HR) repair. Mechanistic studies revealed that bleomycin-mediated transcriptional inhibition of Rad51 might primarily result from E2F1 depletion. Furthermore, the genetic supplement of Rad51 substantially mitigated bleomycin-mediated effects on DSB repair and senescence in AECs. Notably, decreased Rad51 expression was also observed in the bleomycin-induced mouse pulmonary fibrosis model. CONCLUSIONS: Our works suggest that the inhibition of Rad51 plays a pivotal role in bleomycin-induced AECs senescence and lung injury, offering potential strategies to alleviate the pulmonary toxicity of bleomycin.


Assuntos
Bleomicina , Senescência Celular , Reparo do DNA , Rad51 Recombinase , Bleomicina/efeitos adversos , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética , Animais , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Humanos , Camundongos , Reparo do DNA/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Células A549 , Dano ao DNA/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos
9.
ACS Appl Mater Interfaces ; 16(17): 21722-21735, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629735

RESUMO

While temozolomide (TMZ) has been a cornerstone in the treatment of newly diagnosed glioblastoma (GBM), a significant challenge has been the emergence of resistance to TMZ, which compromises its clinical benefits. Additionally, the nonspecificity of TMZ can lead to detrimental side effects. Although TMZ is capable of penetrating the blood-brain barrier (BBB), our research addresses the need for targeted therapy to circumvent resistance mechanisms and reduce off-target effects. This study introduces the use of PEGylated mesoporous silica nanoparticles (MSN) with octyl group modifications (C8-MSN) as a nanocarrier system for the delivery of docetaxel (DTX), providing a novel approach for treating TMZ-resistant GBM. Our findings reveal that C8-MSN is biocompatible in vitro, and DTX@C8-MSN shows no hemolytic activity at therapeutic concentrations, maintaining efficacy against GBM cells. Crucially, in vivo imaging demonstrates preferential accumulation of C8-MSN within the tumor region, suggesting enhanced permeability across the blood-brain tumor barrier (BBTB). When administered to orthotopic glioma mouse models, DTX@C8-MSN notably prolongs survival by over 50%, significantly reduces tumor volume, and decreases side effects compared to free DTX, indicating a targeted and effective approach to treatment. The apoptotic pathways activated by DTX@C8-MSN, evidenced by the increased levels of cleaved caspase-3 and PARP, point to a potent therapeutic mechanism. Collectively, the results advocate DTX@C8-MSN as a promising candidate for targeted therapy in TMZ-resistant GBM, optimizing drug delivery and bioavailability to overcome current therapeutic limitations.


Assuntos
Barreira Hematoencefálica , Docetaxel , Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Nanopartículas , Dióxido de Silício , Temozolomida , Temozolomida/química , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Temozolomida/farmacocinética , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Docetaxel/química , Docetaxel/farmacologia , Docetaxel/farmacocinética , Docetaxel/uso terapêutico , Dióxido de Silício/química , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Animais , Nanopartículas/química , Humanos , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Porosidade , Portadores de Fármacos/química , Camundongos Nus , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos
10.
Biomedicines ; 12(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38672120

RESUMO

Anti-PD-1/PD-L1 immune checkpoint blockade (ICB) has been widely used to treat many types of cancer. It is well established that PD-L1 expressing cancer cells could directly inhibit the cytotoxicity of PD-1+ T cells via PD-L1-PD-1 interaction. However, histological quantification of intratumoral PD-L1 expression provides limited predictive value and PD-L1 negative patients could still benefit from ICB treatment. Therefore, the current major clinical challenges are low objective response rate and unclear immunological mechanisms behind responding vs. non-responding patients. Here, we review recent studies highlighting the importance of longitudinal pre- and post-ICB treatment on patients with various types of solid tumor to elucidate the mechanisms behind ICB treatment. On one hand, ICB induces changes in the tumor microenvironment by reinvigorating intratumoral PD-1+ exhausted T cells ("releasing the brakes"). On the other hand, ICB can also affect systemic antitumor immunity in the tumor-draining lymph node to induce priming/activation of cancer specific T cells, which is evident by T cell clonal expansion/replacement in peripheral blood. These studies reveal that ICB treatment not only acts on the tumor microenvironment ("battlefield") but also acts on immune organs ("training camp") of patients with solid tumors. A deeper understanding of the immunological mechanisms behind ICB treatment will pave the way for further improvements in clinical response.

11.
Eur J Pharmacol ; 971: 176496, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508437

RESUMO

Patients with myocardial infarction have a much worse prognosis when they have myocardial ischemia-reperfusion (I/R) injury. Further research into the molecular basis of myocardial I/R injury is therefore urgently needed, as well as the identification of novel therapeutic targets and linkages to interventions. Three cysteine residues are present in DJ-1 at amino acids 46, 53, and 106 sites, with the cysteine at position 106 being the most oxidation-prone. This study sought to understand how oxidized DJ-1(C106) contributes to myocardial I/R damage. Rats' left anterior descending branches were tied off to establish a myocardial I/R model in vivo. A myocardial I/R model in vitro was established via anoxia/reoxygenation (A/R) of H9c2 cells. The results showed that autophagy increased after I/R, accompanied by the increased expression of oxidized DJ-1 (ox-DJ-1). In contrast, after pretreatment with NAC (N-acetylcysteine, a ROS scavenger) or Comp-23 (Compound-23, a specific antioxidant binding to the C106 site of DJ-1), the levels of ox-DJ-1, autophagy and LDH release decreased, and cell survival rate increased. Furthermore, the inhibition of interaction between ox-DJ-1 and PTEN could increase PTEN phosphatase activity, inhibit the p-IKK/NF-κB/Beclin1 pathway, reduce injurious autophagy, and alleviate A/R injury. However, BA (Betulinic acid, a NF-κB agonist) was able to reverse the protective effects produced by Comp-23 pretreatment. In conclusion, ox-DJ-1 could activate detrimental autophagy through the PTEN/p-IKK/NF-κB/Beclin1 pathway and exacerbate myocardial I/R injury.


Assuntos
Traumatismo por Reperfusão Miocárdica , NF-kappa B , Animais , Humanos , Ratos , Autofagia , Proteína Beclina-1 , Cisteína/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , NF-kappa B/metabolismo , PTEN Fosfo-Hidrolase , Ratos Sprague-Dawley
12.
Cell Signal ; 116: 111058, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38244711

RESUMO

Cutaneous melanoma is one of the most malignant human tumors and possesses strong resistance to radiotherapy. However, the mechanisms contribute to such radioresistance of melanoma is unclear. In this study, SIRT7 is identified to be higher-expressed in melanoma and positively correlated with melanoma staging. Under ionizing radiation (IR)-treatment condition, loss of SIRT7 compromised the survivability of melanoma cells showed by decreased proliferation, colony formation, migration, but enhancing apoptosis. Transcriptomic sequencing analysis indicated the apoptosis induced after SIRT7 knockdown is tightly related with the induction of endoplasmic reticulum stress (ER stress) by IR treatment. Loss of SIRT7 enhanced EIF2α acetylation and activated its phosphorylation to induce the expression of ER stress proteins including DDIT3, XBP1 and GRP78, among which DDIT3 is responsible for apoptosis induction. SIRT7 depletion enriched ER stress-activated transcription factor ATF4 at the promoter region of DDIT3 gene to transactivate its expression and induces apoptotic cascade in both mock- and IR-treatment conditions. Consistently, SIRT7 is highly upregulated in radioresistant melanoma cell strain and still modulates the ER-stress responsive genes to maintain the homeostasis of melanoma. Collectively, SIRT7 negatively regulates ER stress-activated apoptosis to enhance the survivability of melanoma cells in both non-IR- and IR-treatment conditions. Our study highlights the role of SIRT7 in repressing ER stress and the following apoptosis to sustain tumor development and mediate radioresistance in melanoma, which may suggest a novel intervention target for melanoma therapy.


Assuntos
Melanoma , Sirtuínas , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/radioterapia , Melanoma/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/radioterapia , Apoptose , Estresse do Retículo Endoplasmático/genética , Chaperona BiP do Retículo Endoplasmático , Sirtuínas/genética
13.
Int J Radiat Oncol Biol Phys ; 118(5): 1347-1370, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092257

RESUMO

Radiation therapy is a primary treatment for cancer, but radioresistance remains a significant challenge in improving efficacy and reducing toxicity. Accumulating evidence suggests that deubiquitinases (DUBs) play a crucial role in regulating cell sensitivity to ionizing radiation. Traditional small-molecule DUB inhibitors have demonstrated radiosensitization effects, and novel deubiquitinase-targeting chimeras (DUBTACs) provide a promising strategy for radiosensitizer development by harnessing the ubiquitin-proteasome system. This review highlights the mechanisms by which DUBs regulate radiosensitivity, including DNA damage repair, the cell cycle, cell death, and hypoxia. Progress on DUB inhibitors and DUBTACs is summarized, and their potential radiosensitization effects are discussed. Developing drugs targeting DUBs appears to be a promising alternative approach to overcoming radioresistance, warranting further research into their mechanisms.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/uso terapêutico , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Enzimas Desubiquitinantes/metabolismo , Tolerância a Radiação
14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(6): 1860-1865, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38071073

RESUMO

OBJECTIVE: To investigate the safety and efficacy of novel CD19-KIRS2/Dap12-BB chimeric antigen receptor T cells (CAR-T cells) in the treatment of relapsed/refractory B-cell malignancy (R/R BCM). METHODS: Three patients with R/R BCM treated with novel CD19-KIRS2/Dap12-BB CAR-T cells from June 2020 to November 2020 were enrolled, including 1 case of B-cell acute lymphoblastic leukaemia (B-ALL) and 2 cases of non-Hodgkin's lymphoma (NHL), and the efficacy and adverse reactions were observed. RESULTS: After CAR-T cells infusion, patient with B-ALL achieved complete remission (CR) and minimal residual disease (MRD) turned negative, and 2 patients with NHL achieved partial remission (PR). Grade 2 cytokine release syndrome (CRS) occurred in B-ALL patient, grade 1 CRS occurred in 2 NHL patients, and grade II to IV hematologic adverse reactions occurred in 3 patients, all of which were controllable and reversible. The progression-free survival (PFS) of the 3 patients was 143, 199, and 91 days, and overall survival (OS) was 282, 430, and 338 days, respectively. CONCLUSION: The novel CD19-KIRS2/Dap12-BB CAR-T cells in treatment of 3 patients with R/R BCM have significant short-term efficacy and controllable adverse reactions, but the long-term efficacy needs to be further improved.


Assuntos
Linfoma de Burkitt , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Antígenos CD19 , Neoplasia Residual , Proteínas Adaptadoras de Transdução de Sinal
15.
Clin Exp Med ; 23(8): 5241-5254, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907623

RESUMO

Chimeric antigen receptor T (CAR-T) cell therapy exhibits remarkable efficacy against refractory or relapsed multiple myeloma (RRMM); however, the immune deficiency following CAR-Ts infusion has not been well studied. In this study, 126 patients who achieved remission post-CAR-Ts infusion were evaluated for cellular immunity. Following lymphodepletion (LD) chemotherapy, the absolute lymphocyte count (ALC) and absolute counts of lymphocyte subsets were significantly lower than baseline at D0. Grade ≥ 3 lymphopenia occurred in 99% of patients within the first 30 days, with most being resolved by 180 days. The median CD4+ T-cell count was consistently below baseline and the lower limit of normal (LLN) levels at follow-up. Conversely, the median CD8+ T-cell count returned to the baseline and LLN levels by D30. The median B-cell count remained lower than baseline level at D60 and returned to baseline and LLN levels at D180. In the first 30 days, 27 (21.4%) patients had 29 infections, with the majority being mild to moderate in severity (21/29; 72.4%). After day 30, 44 (34.9%) patients had 56 infections, including 20 severe infections. One patient died from bacteremia at 3.8 months post-CAR-Ts infusion. In conclusion, most patients with RRMM experienced cellular immune deficiency caused by LD chemotherapy and CAR-Ts infusion. The ALC and most lymphocyte subsets gradually recovered after day 30 of CAR-Ts infusion, except for CD4+ T cells. Some patients experience prolonged CD4+ T-cell immunosuppression without severe infection.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Imunoterapia Adotiva/efeitos adversos , Imunidade Celular , Terapia Baseada em Transplante de Células e Tecidos
16.
J Am Chem Soc ; 145(48): 26169-26178, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37988478

RESUMO

Imaging-guided chemodynamic therapy is widely considered a promising modality for personalized and precision cancer treatment. Combining both imaging and chemodynamic functions in one system conventionally relies on the hybrid materials approach. However, the heterogeneous, ill-defined, and dissociative/disintegrative nature of the composites tends to complicate their action proceedings in biological environments and thus makes the treatment imprecise and ineffective. Herein, a strategy to employ two kinds of inorganic units with different functions─reactive oxygen species generation and characteristic emission─has achieved two single-crystalline metal-organic frameworks (MOFs), demonstrating the competency of reticular chemistry in creating multifunctional materials with atomic precision. The multinary MOFs could not only catalyze the transformation from H2O2 to hydroxyl radicals by utilizing the redox-active Cu-based units but also emit characteristic tissue-penetrating near-infrared luminescence brought by the Yb4 clusters in the scaffolds. Dual functions of MOF nanoparticles are further evidenced by pronounced cell imaging signals, elevated intracellular reactive oxygen species levels, significant cell apoptosis, and reduced cell viabilities when they are taken up by the HeLa cells. In vivo NIR imaging is demonstrated after the MOF nanoparticles are further functionalized. The independent yet interconnected modules in the intact MOFs could operate concurrently at the same cellular site, achieving a high spatiotemporal consistency. Overall, our work suggests a new method to effectively accommodate both imaging and therapy functions in one well-defined material for precise treatment.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Humanos , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/química , Células HeLa , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Fototerapia , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
17.
Angew Chem Int Ed Engl ; 62(49): e202311883, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37860881

RESUMO

High-resolution in vivo optical multiplexing in second near-infrared window (NIR-II, 1000-1700 nm) is vital to biomedical research. Presently, limited by bio-tissue scattering, only luminescent probes located at NIR-IIb (1500-1700 nm) window can provide high-resolution in vivo multiplexed imaging. However, the number of available luminescent probes in this narrow NIR-IIb region is limited, which hampers the available multiplexed channels of in vivo imaging. To overcome the above challenges, through theoretical simulation we expanded the conventional NIR-IIb window to NIR-II long-wavelength (NIR-II-L, 1500-1900 nm) window on the basis of photon-scattering and water-absorption. We developed a series of novel lanthanide luminescent nanoprobes with emission wavelengths from 1852 nm to 2842 nm. NIR-II-L nanoprobes enabled high-resolution in vivo dynamic multiplexed imaging on blood vessels and intestines, and provided multi-channels imaging on lymph tubes, tumors and intestines. The proposed NIR-II-L probes without mutual interference are powerful tools for high-contrast in vivo multiplexed detection, which holds promise for revealing physiological process in living body.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas , Neoplasias , Humanos , Elementos da Série dos Lantanídeos/química , Imagem Óptica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Nanopartículas/química
18.
Front Oncol ; 13: 1198467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404762

RESUMO

The drug pair consisting of Sophora flavescens Aiton (Sophorae flavescentis radix, Kushen) and Coptis chinensis Franch. (Coptidis rhizoma, Huanglian), as described in Prescriptions for Universal Relief (Pujifang), is widely used to treat laxation. Matrine and berberine are the major active components of Kushen and Huanglian, respectively. These agents have shown remarkable anti-cancer and anti-inflammatory effects. A mouse model of colorectal cancer was used to determine the most effective combination of Kushen and Huanglian against anti-colorectal cancer. The results showed that the combination of Kushen and Huanglian at a 1:1 ratio exerted the best anti-colorectal cancer effect versus other ratios. Moreover, the anti-colorectal cancer effect and potential mechanism underlying the effects of matrine and berberine were evaluated by the analysis of combination treatment or monotherapy. In addition, the chemical constituents of Kushen and Huanglian were identified and quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 67 chemical components were identified from the Kushen-Huanglian drug pair (water extraction), and the levels of matrine and berberine were 129 and 232 µg/g, respectively. Matrine and berberine reduced the growth of colorectal cancer and relieved the pathological conditions in mice. In addition, the combination of matrine and berberine displayed better anti-colorectal cancer efficacy than monotherapy. Moreover, matrine and berberine reduced the relative abundance of Bacteroidota and Campilobacterota at phylum level and that of Helicobacter, Lachnospiraceae_NK4A136_group, Candidatus_Arthromitus, norank_f_Lachnospiraceae, Rikenella, Odoribacter, Streptococcus, norank_f_Ruminococcaceae, and Anaerotruncus at the genus level. Western blotting results demonstrated that treatment with matrine and berberine decreased the protein expressions of c-MYC and RAS, whereas it increased that of sirtuin 3 (Sirt3). The findings indicated that the combination of matrine and berberine was more effective in inhibiting colorectal cancer than monotherapy. This beneficial effect might depend on the improvement of intestinal microbiota structure and regulation of the RAS/MEK/ERK-c-MYC-Sirt3 signaling axis.

19.
Int J Med Sci ; 20(8): 1060-1078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484811

RESUMO

Background: Solute Carrier Family 3 Member 2 (SLC3A2) is a member of the solute carrier family that plays pivotal roles in regulation of intracellular calcium levels and transports L-type amino acids. However, there are insufficient scientific researches on the prognostic and immunological roles of SLC3A2 in breast cancer (BC) and whether everolimus regulates novel SLC3A2 related molecular mechanism in the immuno-oncology context of the tumor microenvironment (TME), therefore, we see a necessity to conduct the current in silico and biological experimental study. Methods: Using diverse online databases, we investigated the role of SLC3A2 in therapy response, clinicopathological characteristics, tumor immune infiltration, genetic alteration, methylation and single cell sequencing in BC. WB, Co-IP, cell proliferation assay, Edu staining, ROS and GSH assay and in vivo tumor xenograft assays were performed to verify FKBP1A/SLC3A2 axis in everolimus inducing ferroptosis of breast cancer. Co-cultures and IL-9 ELISA were performed to demonstrate the T lymphocyte function. Results: We demonstrated that SLC3A2 was aberrantly expressed among various BC cohorts. Our results also suggested that SLC3A2 expression was associated with chemotherapeutic outcome in BC patients. Our results further indicated that SLC3A2 was associated with tumor infiltration of cytotoxic T cell but not other immune cells among BC TME. The alterations in SLC3A2 gene had a significant correlation to relapse free survival and contributed a significant impact on BC tumor mutational burden. Finally, SLC3A2 was illustrated to be expressed in diverse BC cellular populations at single cell level, and negatively linked to angiogenesis, inflammation and quiescence, but positively correlated with other functional phenotypes. Noteworthily, everolimus (a targeted therapy drug for BC) related protein, FK506-binding protein 1A (FKBP1A) was found to bind with SLC3A2, and negatively regulated SLC3A2 expression during the processes of everolimus inducing ferroptosis of BC cells and promoting anti-proliferation of Th9 lymphocytes. Conclusions: Altogether, our study strongly implies that SLC3A2 is an immuno-oncogenic factor and FKBP1A/SLC3A2 axis would provide insights for a novel immunotherapy approach for the treatment of BC in the context of TME.


Assuntos
Neoplasias da Mama , Ferroptose , Humanos , Feminino , Everolimo/farmacologia , Everolimo/uso terapêutico , Proteína 1A de Ligação a Tacrolimo/metabolismo , Ferroptose/genética , Recidiva Local de Neoplasia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Microambiente Tumoral/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
20.
Environ Sci Technol ; 57(29): 10574-10581, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37450278

RESUMO

Surface modifications are generally used to functionalize QDots to improve their properties for practical applications, but the relationship between QDot modification and biological activity is not well understood. Using an early staged zebrafish model, we investigated the biodistribution and toxicity of CdSe/ZnS QDots with four types of modifications, including anionic poly(ethylene glycol)-carboxyl ((PEG)n-COOH), anionic mercaptopropionic acid (MPA), zwitterionic glutathione (GSH), and cationic cysteamine (CA). None of the QDots showed obvious toxicity to zebrafish embryos prior to hatching because the zebrafish chorion is an effective barrier that protects against QDot exposure. The QDots were mainly absorbed on the epidermis of the target organs after hatching and were primarily deposited in the mouth and gastrointestinal tract when the zebrafish started feeding. CA-QDots possessed the highest adsorption capacity; however, (PEG)n-COOH-QDots showed the most severe toxicity to zebrafish, as determined by mortality, hatching rate, heartbeat, and malformation assessments. It shows that the toxicity of the QDots is mainly attributed to ROS generation rather than Cd2+ release. This study provides a comprehensive understanding of the environmental and ecological risks of nanoparticles in relation to their surface modification.


Assuntos
Nanopartículas , Pontos Quânticos , Animais , Pontos Quânticos/toxicidade , Peixe-Zebra , Distribuição Tecidual , Polietilenoglicóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA