Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Blood Adv ; 8(1): 150-163, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-37782774

RESUMO

ABSTRACT: Mantle cell lymphoma (MCL) is an incurable B-cell non-Hodgkin lymphoma, and patients who relapse on targeted therapies have poor prognosis. Protein arginine methyltransferase 5 (PRMT5), an enzyme essential for B-cell transformation, drives multiple oncogenic pathways and is overexpressed in MCL. Despite the antitumor activity of PRMT5 inhibition (PRT-382/PRT-808), drug resistance was observed in a patient-derived xenograft (PDX) MCL model. Decreased survival of mice engrafted with these PRMT5 inhibitor-resistant cells vs treatment-naive cells was observed (P = .005). MCL cell lines showed variable sensitivity to PRMT5 inhibition. Using PRT-382, cell lines were classified as sensitive (n = 4; 50% inhibitory concentration [IC50], 20-140 nM) or primary resistant (n = 4; 340-1650 nM). Prolonged culture of sensitive MCL lines with drug escalation produced PRMT5 inhibitor-resistant cell lines (n = 4; 200-500 nM). This resistant phenotype persisted after prolonged culture in the absence of drug and was observed with PRT-808. In the resistant PDX and cell line models, symmetric dimethylarginine reduction was achieved at the original PRMT5 inhibitor IC50, suggesting activation of alternative resistance pathways. Bulk RNA sequencing of resistant cell lines and PDX relative to sensitive or short-term-treated cells, respectively, highlighted shared upregulation of multiple pathways including mechanistic target of rapamycin kinase [mTOR] signaling (P < 10-5 and z score > 0.3 or < 0.3). Single-cell RNA sequencing analysis demonstrated a strong shift in global gene expression, with upregulation of mTOR signaling in resistant PDX MCL samples. Targeted blockade of mTORC1 with temsirolimus overcame the PRMT5 inhibitor-resistant phenotype, displayed therapeutic synergy in resistant MCL cell lines, and improved survival of a resistant PDX.


Assuntos
Linfoma de Célula do Manto , Humanos , Camundongos , Animais , Adulto , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/patologia , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Transdução de Sinais , Inibidores Enzimáticos/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo
3.
Blood Adv ; 7(20): 6211-6224, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37327122

RESUMO

Mantle cell lymphoma (MCL) is an incurable B-cell malignancy that comprises up to 6% of non-Hodgkin lymphomas diagnosed annually and is associated with a poor prognosis. The average overall survival of patients with MCL is 5 years, and for most patients who progress on targeted agents, survival remains at a dismal 3 to 8 months. There is a major unmet need to identify new therapeutic approaches that are well tolerated to improve treatment outcomes and quality of life. The protein arginine methyltransferase 5 (PRMT5) enzyme is overexpressed in MCL and promotes growth and survival. Inhibition of PRMT5 drives antitumor activity in MCL cell lines and preclinical murine models. PRMT5 inhibition reduced the activity of prosurvival AKT signaling, which led to the nuclear translocation of FOXO1 and modulation of its transcriptional activity. Chromatin immunoprecipitation and sequencing identified multiple proapoptotic BCL-2 family members as FOXO1-bound genomic loci. We identified BAX as a direct transcriptional target of FOXO1 and demonstrated its critical role in the synergy observed between the selective PRMT5 inhibitor, PRT382, and the BCL-2 inhibitor, venetoclax. Single-agent and combination treatments were performed in 9 MCL lines. Loewe synergy scores showed significant levels of synergy in most MCL lines tested. Preclinical, in vivo evaluation of this strategy in multiple MCL models showed therapeutic synergy with combination venetoclax/PRT382 treatment with an increased survival advantage in 2 patient-derived xenograft models (P ≤ .0001, P ≤ .0001). Our results provide mechanistic rationale for the combination of PRMT5 inhibition and venetoclax to treat patients with MCL.


Assuntos
Antineoplásicos , Compostos Bicíclicos Heterocíclicos com Pontes , Linfoma de Célula do Manto , Sulfonamidas , Animais , Humanos , Camundongos , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Qualidade de Vida
4.
Blood ; 142(10): 887-902, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37267517

RESUMO

Mantle cell lymphoma (MCL) is an incurable B-cell malignancy with an overall poor prognosis, particularly for patients that progress on targeted therapies. Novel, more durable treatment options are needed for patients with MCL. Protein arginine methyltransferase 5 (PRMT5) is overexpressed in MCL and plays an important oncogenic role in this disease via epigenetic and posttranslational modification of cell cycle regulators, DNA repair genes, components of prosurvival pathways, and RNA splicing regulators. The mechanism of targeting PRMT5 in MCL remains incompletely characterized. Here, we report on the antitumor activity of PRMT5 inhibition in MCL using integrated transcriptomics of in vitro and in vivo models of MCL. Treatment with a selective small-molecule inhibitor of PRMT5, PRT-382, led to growth arrest and cell death and provided a therapeutic benefit in xenografts derived from patients with MCL. Transcriptional reprograming upon PRMT5 inhibition led to restored regulatory activity of the cell cycle (p-RB/E2F), apoptotic cell death (p53-dependent/p53-independent), and activation of negative regulators of B-cell receptor-PI3K/AKT signaling (PHLDA3, PTPROt, and PIK3IP1). We propose pharmacologic inhibition of PRMT5 for patients with relapsed/refractory MCL and identify MTAP/CDKN2A deletion and wild-type TP53 as biomarkers that predict a favorable response. Selective targeting of PRMT5 has significant activity in preclinical models of MCL and warrants further investigation in clinical trials.


Assuntos
Linfoma de Célula do Manto , Fosfatidilinositol 3-Quinases , Adulto , Humanos , Linhagem Celular Tumoral , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
5.
Nat Commun ; 14(1): 97, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609611

RESUMO

Richter's Transformation (RT) is a poorly understood and fatal progression of chronic lymphocytic leukemia (CLL) manifesting histologically as diffuse large B-cell lymphoma. Protein arginine methyltransferase 5 (PRMT5) is implicated in lymphomagenesis, but its role in CLL or RT progression is unknown. We demonstrate herein that tumors uniformly overexpress PRMT5 in patients with progression to RT. Furthermore, mice with B-specific overexpression of hPRMT5 develop a B-lymphoid expansion with increased risk of death, and Eµ-PRMT5/TCL1 double transgenic mice develop a highly aggressive disease with transformation that histologically resembles RT; where large-scale transcriptional profiling identifies oncogenic pathways mediating PRMT5-driven disease progression. Lastly, we report the development of a SAM-competitive PRMT5 inhibitor, PRT382, with exclusive selectivity and optimal in vitro and in vivo activity compared to available PRMT5 inhibitors. Taken together, the discovery that PRMT5 drives oncogenic pathways promoting RT provides a compelling rationale for clinical investigation of PRMT5 inhibitors such as PRT382 in aggressive CLL/RT cases.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Animais , Camundongos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma Difuso de Grandes Células B/patologia
6.
J Clin Invest ; 132(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36282572

RESUMO

Targeting lineage-defined transcriptional dependencies has emerged as an effective therapeutic strategy in cancer treatment. Through screening for molecular vulnerabilities of mantle cell lymphoma (MCL), we identified a set of transcription factors (TFs) including FOXO1, EBF1, PAX5, and IRF4 that are essential for MCL propagation. Integrated chromatin immunoprecipitation and sequencing (ChIP-Seq) with transcriptional network reconstruction analysis revealed FOXO1 as a master regulator that acts upstream in the regulatory TF hierarchy. FOXO1 is both necessary and sufficient to drive MCL lineage commitment through supporting the lineage-specific transcription programs. We further show that FOXO1, but not its close paralog FOXO3, can reprogram myeloid leukemia cells and induce B-lineage gene expression. Finally, we demonstrate that cpd10, a small molecule identified from an enriched FOXO1 inhibitor library, induces a robust cytotoxic response in MCL cells in vitro and suppresses MCL progression in vivo. Our findings establish FOXO1 inhibition as a therapeutic strategy targeting lineage-driven transcriptional addiction in MCL.


Assuntos
Linfoma de Célula do Manto , Humanos , Adulto , Linfoma de Célula do Manto/genética , Redes Reguladoras de Genes , Proteína Forkhead Box O1/genética
7.
Exp Hematol Oncol ; 11(1): 40, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831896

RESUMO

BACKGROUND: Mantle cell lymphoma (MCL) is a rare, highly heterogeneous type of B-cell non-Hodgkin's lymphoma. The sumoylation pathway is known to be upregulated in many cancers including lymphoid malignancies. However, little is known about its oncogenic role in MCL. METHODS: Levels of sumoylation enzymes and sumoylated proteins were quantified in MCL cell lines and primary MCL patient samples by scRNA sequencing and immunoblotting. The sumoylation enzyme SAE2 was genetically and pharmacologically targeted with shRNA and TAK-981 (subasumstat). The effects of SAE2 inhibition on MCL proliferation and cell cycle were evaluated using confocal microscopy, live-cell microscopy, and flow cytometry. Immunoprecipitation and orbitrap mass spectrometry were used to identify proteins targeted by sumoylation in MCL cells. RESULTS: MCL cells have significant upregulation of the sumoylation pathway at the level of the enzymes SAE1 and SAE2 which correlated with poor prognosis and induction of mitosis associated genes. Selective inhibition of SAE2 with TAK-981 results in significant MCL cell death in vitro and in vivo with mitotic dysregulation being an important mechanism of action. We uncovered a sumoylation program in mitotic MCL cells comprised of multiple pathways which could be directly targeted with TAK-981. Centromeric localization of topoisomerase 2A, a gene highly upregulated in SAE1 and SAE2 overexpressing MCL cells, was lost with TAK-981 treatment likely contributing to the mitotic dysregulation seen in MCL cells. CONCLUSIONS: This study not only validates SAE2 as a therapeutic target in MCL but also opens the door to further mechanistic work to uncover how to best use desumoylation therapy to treat MCL and other lymphoid malignancies.

8.
Clin Cancer Res ; 27(7): 1855-1863, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33495311

RESUMO

PURPOSE: Recent preclinical data suggest that cyclin-dependent kinase 4/6 (CDK4/6) inhibition may be harnessed to sensitize estrogen receptor-positive (ER+) breast cancer to radiotherapy. However, these findings were obtained in human ER+ breast cancer cell lines exposed to subclinical doses of CDK4/6 inhibitors with limited attention to treatment schedule. We investigated the activity of radiotherapy combined with the prototypic CDK4/6 inhibitor palbociclib placing emphasis on therapeutic schedule. EXPERIMENTAL DESIGN: We combined radiotherapy and palbociclib in various doses and therapeutic schedules in human and mouse models of ER+ and ER-negative (ER-) breast cancer, including an immunocompetent mouse model that recapitulates key features of human luminal B breast cancer in women. We assessed proliferation, cell death, cell-cycle control, and clonogenic survival in vitro, as well as tumor growth, overall survival, and metastatic dissemination in vivo. RESULTS: Radiotherapy and palbociclib employed as standalone agents had partial cytostatic effects in vitro, correlating with suboptimal tumor control in vivo. However, while palbociclib delivered before focal radiotherapy provided minimal benefits as compared with either treatment alone, delivering focal radiotherapy before palbociclib mediated superior therapeutic effects, even in the absence of p53. Such superiority manifested in vitro with enhanced cytostasis and loss of clonogenic potential, as well as in vivo with improved local and systemic tumor control. CONCLUSIONS: Our preclinical findings demonstrate that radiotherapy delivered before CDK4/6 inhibitors mediates superior antineoplastic effects compared with alternative treatment schedules, calling into question the design of clinical trials administering CDK4/6 inhibitors before radiotherapy in women with ER+ breast cancer.


Assuntos
Neoplasias da Mama/terapia , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Estrogênio/análise
9.
Ann Lymphoma ; 42020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32783046

RESUMO

Targeting the cell cycle represents a rational approach to mantle cell lymphoma (MCL) therapy, as aberrant expression of cyclin D1 and dysregulation of CDK4 underlie cell cycle progression and proliferation of MCL cells. Although cell cycle cancer therapy was historically ineffective due to a lack of selective and effective drugs, this landscape changed with the advent of selective and potent small-molecule oral CDK4/6 inhibitors. Here, we review the anti-tumor activities and clinical data of selective CDK4/6 inhibitors in MCL. We summarize the known mechanism of action of palbociclib, the most specific CDK4/6 inhibitor to date, and the strategy to leverage this specificity to reprogram MCL for a deeper and more durable clinical response to partner drugs. We also discuss integrative longitudinal functional genomics as a strategy to discover tumor-intrinsic genomic biomarkers and tumor-immune interactions that potentially contribute to the clinical response to palbociclib in combination therapy for MCL. Understanding the genomic basis for targeting CDK4/6 and the mechanisms of action and resistance in MCL may advance personalized therapy for MCL and shed light on drug resistance in other cancers.

10.
Hematol Oncol Clin North Am ; 34(5): 809-823, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32861279

RESUMO

Cell cycle dysregulation caused by aberrant cyclin D1 and CDK4 expression is a major determinant for proliferation of cancer cells in mantle cell lymphoma (MCL). Inhibition of CDK4/6 induces G1 arrest of MCL cells in patients, appearing to deepen and prolong the clinical response to partner agents. This article reviews aberrations of cell cycle genes in MCL cells and clinical trials of CDK4/6 inhibitors for MCL. Integrative longitudinal functional genomics is discussed as a strategy to discover genomic drivers for resistance in cancer cells and cancer-immune interactions that potentially contribute to the clinical response to palbociclib combination therapy in MCL.


Assuntos
Ciclina D1 , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Pontos de Checagem da Fase G1 do Ciclo Celular , Linfoma de Célula do Manto , Piperazinas/uso terapêutico , Piridinas/uso terapêutico , Ciclina D1/genética , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Genômica , Humanos , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia
11.
Nat Rev Immunol ; 20(11): 669-679, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32346095

RESUMO

Cell cycle proteins that are often dysregulated in malignant cells, such as cyclin-dependent kinase 4 (CDK4) and CDK6, have attracted considerable interest as potential targets for cancer therapy. In this context, multiple inhibitors of CDK4 and CDK6 have been developed, including three small molecules (palbociclib, abemaciclib and ribociclib) that are currently approved for the treatment of patients with breast cancer and are being extensively tested in individuals with other solid and haematological malignancies. Accumulating preclinical and clinical evidence indicates that the anticancer activity of CDK4/CDK6 inhibitors results not only from their ability to block the cell cycle in malignant cells but also from a range of immunostimulatory effects. In this Review, we discuss the ability of anticancer cell cycle inhibitors to modulate various immune functions in support of effective antitumour immunity.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Ciclo Celular/efeitos dos fármacos , Imunomodulação , Neoplasias/tratamento farmacológico , Animais , Ensaios Clínicos como Assunto , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Humanos , Inibidores de Proteínas Quinases/uso terapêutico
12.
Leuk Lymphoma ; 60(12): 2917-2921, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31120355

RESUMO

In mantle cell lymphoma (MCL), cyclin D1 combines with CDK4/6 to phosphorylate Rb, releasing a break on the G1 to S phase cell cycle. Palbociclib is a specific, potent, oral inhibitor of CDK4/6 capable of inducing a complete, prolonged G1 cell cycle arrest (pG1) in Rb+ MCL cells. The proteasome inhibitor bortezomib is approved by the US Food and Drug Administration for treatment of mantle cell lymphoma. Palbociclib-induced pG1 appears to sensitize MCL cells to killing by low-dose bortezomib, potentially improving its activity and tolerability. We conducted a phase 1 trial of palbociclib plus bortezomib in patients with previously treated MCL (NCT01111188). Patients received palbociclib at 75 mg (dose level 1), 100 mg (dose level 2), or 125 mg (dose levels 3 and 4) on days 1-12 of each 21-day cycle in addition to intravenous bortezomib 1.0 mg/m2 (dose levels 1, 2, 3) or 1.3 mg/m2 (dose level 4) on days 8, 11, 15 and 18. A total of 19 patients with a median age of 64 and an average of 2 prior therapies were enrolled. Two subjects experienced dose limiting toxicity (DLT): thrombocytopenia (dose level 1) and neutropenia (dose level 3). Although no DLTs were seen at dose level 4, all patients required dose delays during cycle 2 due to cytopenias, and the study team decided to stop the trial. Four of 19 patients achieved a clinical response, including one patient with a complete response. Three patients received treatment for more than one year, including one patient receiving single-agent palbociclib for more than 6 years. The combination of palbociclib 125 mg on days 1-12 plus bortezomib 1.0 mg/m2 on days 8, 11, 15, and 18 of a 21-day cycle is feasible and active in previously treated MCL, with the primary toxicity being myelosuppression. The regimen may be worthy of further evaluation in patients with non-blastoid MCL following failure of other newer agents.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfoma de Célula do Manto/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Bortezomib/administração & dosagem , Bortezomib/farmacocinética , Esquema de Medicação , Monitoramento de Medicamentos , Feminino , Humanos , Linfoma de Célula do Manto/diagnóstico , Masculino , Pessoa de Meia-Idade , Piperazinas/administração & dosagem , Piperazinas/farmacocinética , Piridinas/administração & dosagem , Piridinas/farmacocinética , Retratamento , Resultado do Tratamento
13.
Blood ; 133(11): 1201-1204, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30692121

RESUMO

Single-agent ibrutinib is active in patients with previously treated mantle cell lymphoma (MCL); however, nearly half of all patients experience treatment failure during the first year. We previously demonstrated that prolonged early G1 cell cycle arrest induced by the oral, specific CDK4/6 inhibitor palbociclib can overcome ibrutinib resistance in primary human MCL cells and MCL cell lines expressing wild-type Bruton's tyrosine kinase (BTK). Therefore, we conducted a phase 1 trial to evaluate the dosing, safety, and preliminary activity of palbociclib plus ibrutinib in patients with previously treated mantle cell lymphoma. From August 2014 to June 2016, a total of 27 patients (21 men, 6 women) were enrolled. The maximum tolerated doses were ibrutinib 560 mg daily plus palbociclib 100 mg on days 1 to 21 of each 28-day cycle. The dose-limiting toxicity was grade 3 rash. The most common grade 3 to 4 toxicities included neutropenia (41%), thrombocytopenia (30%), hypertension (15%), febrile neutropenia (15%), and lung infection (11%). The overall and complete response rates were 67% and 37%, and with a median follow-up of 25.6 months, the 2-year progression-free survival was 59.4% and the 2-year response duration was 69.8%. A phase 2 multicenter clinical trial to further characterize efficacy is now ongoing. The current trial was registered at www.clinicaltrials.gov as #NCT02159755.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfoma de Célula do Manto/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Adenina/análogos & derivados , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Linfoma de Célula do Manto/patologia , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Piperazinas/administração & dosagem , Piperidinas , Prognóstico , Pirazóis/administração & dosagem , Piridinas/administração & dosagem , Pirimidinas/administração & dosagem , Taxa de Sobrevida
14.
Cancer Res ; 78(10): 2747-2759, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29559475

RESUMO

Given the frequent and largely incurable occurrence of multiple myeloma, identification of germline genetic mutations that predispose cells to multiple myeloma may provide insight into disease etiology and the developmental mechanisms of its cell of origin, the plasma cell (PC). Here, we identified familial and early-onset multiple myeloma kindreds with truncating mutations in lysine-specific demethylase 1 (LSD1/KDM1A), an epigenetic transcriptional repressor that primarily demethylates histone H3 on lysine 4 and regulates hematopoietic stem cell self-renewal. In addition, we found higher rates of germline truncating and predicted deleterious missense KDM1A mutations in patients with multiple myeloma unselected for family history compared with controls. Both monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma cells have significantly lower KDM1A transcript levels compared with normal PCs. Transcriptome analysis of multiple myeloma cells from KDM1A mutation carriers shows enrichment of pathways and MYC target genes previously associated with myeloma pathogenesis. In mice, antigen challenge followed by pharmacologic inhibition of KDM1A promoted PC expansion, enhanced secondary immune response, elicited appearance of serum paraprotein, and mediated upregulation of MYC transcriptional targets. These changes are consistent with the development of MGUS. Collectively, our findings show that KDM1A is the first autosomal-dominant multiple myeloma germline predisposition gene providing new insights into its mechanistic roles as a tumor suppressor during post-germinal center B-cell differentiation.Significance: KDM1A is the first germline autosomal dominant predisposition gene identified in multiple myeloma and provides new insights into multiple myeloma etiology and the mechanistic role of KDM1A as a tumor suppressor during post-germinal center B-cell differentiation. Cancer Res; 78(10); 2747-59. ©2018 AACR.


Assuntos
Predisposição Genética para Doença/genética , Histona Desmetilases/genética , Gamopatia Monoclonal de Significância Indeterminada/genética , Mieloma Múltiplo/genética , Animais , Linhagem Celular Tumoral , Ciclina D2/biossíntese , Genes Supressores de Tumor , Células Germinativas/patologia , Histona Desmetilases/antagonistas & inibidores , Histonas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto/genética , Paraproteínas/análise , Plasmócitos/patologia , Interferência de RNA , RNA Interferente Pequeno/genética
15.
Clin Lymphoma Myeloma Leuk ; 17(12): 825-833, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29051077

RESUMO

INTRODUCTION: Therapeutic options for multiple myeloma (MM) are growing, yet clinical outcomes remain heterogeneous. Cytogenetic analysis and disease staging are mainstays of risk stratification, but data suggest a complex interplay between numerous abnormalities. Myeloma cell proliferation is a metric shown to predict outcomes, but available methods are not feasible in clinical practice. PATIENTS AND METHODS: Multiplex immunohistochemistry (mIHC), using multiple immunostains simultaneously, is universally available for clinical use. We tested mIHC as a method to calculate a plasma cell proliferation index (PCPI). By mIHC, marrow trephine core biopsy samples were costained for CD138, a plasma cell-specific marker, and Ki-67. Myeloma cells (CD138+) were counted as proliferating if coexpressing Ki-67. Retrospective analysis was performed on 151 newly diagnosed, treatment-naive patients divided into 2 groups on the basis of myeloma cell proliferation: low (PCPI ≤ 5%, n = 87), and high (PCPI > 5%, n = 64). RESULTS: Median overall survival (OS) was not reached versus 78.9 months (P = .0434) for the low versus high PCPI groups. Multivariate analysis showed that only high-risk cytogenetics (hazard ratio [HR] = 2.02; P = .023), International Staging System (ISS) stage > I (HR = 2.30; P = .014), and PCPI > 5% (HR = 1.70; P = .041) had independent effects on OS. Twenty-three (36%) of the 64 patients with low-risk disease (ISS stage 1, without high-risk cytogenetics) were uniquely reidentified as high risk by PCPI. CONCLUSION: PCPI is a practical method that predicts OS in newly diagnosed myeloma and facilitates broader use of MM cell proliferation for risk stratification.


Assuntos
Proliferação de Células , Imuno-Histoquímica/métodos , Mieloma Múltiplo/patologia , Plasmócitos/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/biossíntese , Feminino , Humanos , Estimativa de Kaplan-Meier , Antígeno Ki-67/biossíntese , Masculino , Pessoa de Meia-Idade , Índice Mitótico , Mieloma Múltiplo/metabolismo , Plasmócitos/metabolismo , Estudos Retrospectivos , Fatores de Risco , Sindecana-1/biossíntese
16.
Blood ; 128(24): 2808-2818, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27697772

RESUMO

Mantle cell lymphoma (MCL) accumulates in lymphoid organs, but disseminates early on in extranodal tissues. Although proliferation remains located in lymphoid organs only, suggesting a major role of the tumor ecosystem, few studies have assessed MCL microenvironment. We therefore cocultured primary circulating MCL cells from 21 patients several weeks ex vivo with stromal or lymphoid-like (CD40L) cells to determine which interactions could support their proliferation. We showed that coculture with lymphoid-like cells, but not stromal cells, induced cell-cycle progression, which was amplified by MCL-specific cytokines (insulin-like growth factor-1, B-cell activating factor, interleukin-6, interleukin-10). Of interest, we showed that our model recapitulated the MCL in situ molecular signatures (ie, proliferation, NF-κB, and survival signatures). We further demonstrated that proliferating MCL harbored an imbalance in Bcl-2 family expression, leading to a consequent loss of mitochondrial priming. Of interest, this loss of priming was overcome by the type II anti-CD20 antibody obinutuzumab, which counteracted Bcl-xL induction through NF-κB inhibition. Finally, we showed that the mitochondrial priming directly correlated with the sensitivity toward venetoclax and alkylating drugs. By identifying the microenvironment as the major support for proliferation and drug resistance in MCL, our results highlight a selective approach to target the lymphoma niche.


Assuntos
Linfoma de Célula do Manto/patologia , Linfoma de Célula do Manto/terapia , Terapia de Alvo Molecular , Microambiente Tumoral , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/farmacologia , Antígenos CD20/imunologia , Ligante de CD40/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Tecido Linfoide/patologia , Masculino , Mesoderma/patologia , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteína bcl-X/metabolismo
17.
Blood ; 127(12): 1559-63, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26764355

RESUMO

Despite unprecedented clinical activity in mantle cell lymphoma (MCL), primary and acquired resistance to ibrutinib is common. The outcomes and ideal management of patients who experience ibrutinib failure are unclear. We performed a retrospective cohort study of all patients with MCL who experienced disease progression while receiving ibrutinib across 15 international sites. Medical records were evaluated for clinical characteristics, pathological and radiological data, and therapies used pre- and postibrutinib. A total of 114 subjects met eligibility criteria. The median number of prior therapies was 3 (range, 0-10). The Mantle Cell Lymphoma International Prognostic Index (MIPI) scores at the start of ibrutinib were low, intermediate, and high in 46%, 31%, and 23% of patients, respectively. Of patients with available data prior to ibrutinib and postibrutinib, 34 of 47 and 11 of 12 had a Ki67 >30%. The median time on ibrutinib was 4.7 months (range 0.7-43.6). The median overall survival (OS) following cessation of ibrutinib was 2.9 months (95% confidence interval [CI], 1.6-4.9). Of the 104 patients with data available, 73 underwent subsequent treatment an average of 0.3 months after stopping ibrutinib with a median OS of 5.8 months (95% CI, 3.7-10.4). Multivariate Cox regression analysis of MIPI before postibrutinib treatment, and subsequent treatment with bendamustine, cytarabine, or lenalidomide failed to reveal any association with OS. Poor clinical outcomes were noted in the majority of patients with primary or secondary ibrutinib resistance. We could not identify treatments that clearly improved outcomes. Future trials should focus on understanding the mechanisms of ibrutinib resistance and on treatment after ibrutinib.


Assuntos
Linfoma de Célula do Manto/tratamento farmacológico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Feminino , Humanos , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Piperidinas , Modelos de Riscos Proporcionais , Proteínas Tirosina Quinases/genética , Estudos Retrospectivos , Resultado do Tratamento
18.
FASEB J ; 29(12): 4829-39, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26231201

RESUMO

The immunomodulatory drug (IMiD) thalidomide and its structural analogs lenalidomide and pomalidomide are highly effective in treating clinical indications. Thalidomide binds to cereblon (CRBN), a substrate receptor of the cullin-4 really interesting new gene (RING) E3 ligase complex. Here, we examine the effect of thalidomide and its analogs on CRBN ubiquitination and its functions in human cell lines. We find that the ubiquitin modification of CRBN includes K48-linked polyubiquitin chains and that thalidomide blocks the formation of CRBN-ubiquitin conjugates. Furthermore, we show that ubiquitinated CRBN is targeted for proteasomal degradation. Treatment of human myeloma cell lines such as MM1.S, OPM2, and U266 with thalidomide (100 µM) and its structural analog lenalidomide (10 µM) results in stabilization of CRBN and elevation of CRBN protein levels. This in turn leads to the reduced level of CRBN target proteins and enhances the sensitivity of human multiple myeloma cells to IMiDs. Our results reveal a novel mechanism by which thalidomide and its analogs modulate the CRBN function in cells. Through inhibition of CRBN ubiquitination, thalidomide and its analogs allow CRBN to accumulate, leading to the increased cullin-4 RING E3 ligase-mediated degradation of target proteins.


Assuntos
Mieloma Múltiplo/metabolismo , Peptídeo Hidrolases/metabolismo , Talidomida/análogos & derivados , Talidomida/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas Adaptadoras de Transdução de Sinal , Linhagem Celular Tumoral , Células HEK293 , Humanos , Lenalidomida , Mieloma Múltiplo/patologia , Peptídeo Hidrolases/genética
20.
Cancer Res ; 75(9): 1838-45, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25744718

RESUMO

Cyclin-dependent kinase (CDK)4 and CDK6 are frequently overexpressed or hyperactivated in human cancers. Targeting CDK4/CDK6 in combination with cytotoxic killing therefore represents a rational approach to cancer therapy. By selective inhibition of CDK4/CDK6 with PD 0332991, which leads to early G1 arrest and synchronous S-phase entry upon release of the G1 block, we have developed a novel strategy to prime acute myeloid leukemia (AML) cells for cytotoxic killing by cytarabine (Ara-C). This sensitization is achieved in part through enrichment of S-phase cells, which maximizes the AML populations for Ara-C incorporation into replicating DNA to elicit DNA damage. Moreover, PD 0332991 triggered apoptosis of AML cells through inhibition of the homeobox (HOX)A9 oncogene expression, reducing the transcription of its target PIM1. Reduced PIM1 synthesis attenuates PIM1-mediated phosphorylation of the proapoptotic BAD and activates BAD-dependent apoptosis. In vivo, timely inhibition of CDK4/CDK6 by PD 0332991 and release profoundly suppresses tumor growth in response to reduced doses of Ara-C in a xenograft AML model. Collectively, these data suggest selective and reversible inhibition of CDK4/CDK6 as an effective means to enhance Ara-C killing of AML cells at reduced doses, which has implications for the treatment of elderly AML patients who are unable to tolerate high-dose Ara-C therapy.


Assuntos
Antineoplásicos/farmacologia , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Citarabina/farmacologia , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Células HEK293 , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Fase S/efeitos dos fármacos , Fase S/genética , Transcrição Gênica/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA