Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 74: 103229, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38870781

RESUMO

BACKGROUND: Nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor, is critically involved in the regulation of oxidative stress and inflammation. However, the role of endothelial Nrf2 in atherogenesis has yet to be defined. In addition, how endothelial Nrf2 is activated and whether Nrf2 can be targeted for the prevention and treatment of atherosclerosis is not explored. METHODS: RNA-sequencing and single-cell RNA sequencing analysis of mouse atherosclerotic aortas were used to identify the differentially expressed genes. In vivo endothelial cell (EC)-specific activation of Nrf2 was achieved by injecting adeno-associated viruses into ApoE-/- mice, while EC-specific knockdown of Nrf2 was generated in Cdh5CreCas9floxed-stopApoE-/- mice. RESULTS: Endothelial inflammation appeared as early as on day 3 after feeding of a high cholesterol diet (HCD) in ApoE-/- mice, as reflected by mRNA levels, immunostaining and global mRNA profiling, while the immunosignal of the end-product of lipid peroxidation (LPO), 4-hydroxynonenal (4-HNE), started to increase on day 10. TNF-α, 4-HNE, and erastin (LPO inducer), activated Nrf2 signaling in human ECs by increasing the mRNA and protein expression of Nrf2 target genes. Knockdown of endothelial Nrf2 resulted in augmented endothelial inflammation and LPO, and accelerated atherosclerosis in Cdh5CreCas9floxed-stopApoE-/- mice. By contrast, both EC-specific and pharmacological activation of Nrf2 inhibited endothelial inflammation, LPO, and atherogenesis. CONCLUSIONS: Upon HCD feeding in ApoE-/- mice, endothelial inflammation is an earliest event, followed by the appearance of LPO. EC-specific activation of Nrf2 inhibits atherosclerosis while EC-specific knockdown of Nrf2 results in the opposite effect. Pharmacological activators of endothelial Nrf2 may represent a novel therapeutic strategy for the treatment of atherosclerosis.


Assuntos
Apolipoproteínas E , Aterosclerose , Células Endoteliais , Inflamação , Peroxidação de Lipídeos , Fator 2 Relacionado a NF-E2 , Animais , Humanos , Masculino , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Inflamação/metabolismo , Inflamação/genética , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo
2.
Life Sci ; 349: 122723, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754816

RESUMO

Endothelial dysfunction is the most common pathological feature of cardiovascular diseases, including diabetes mellitus, hypertension and atherosclerosis. It affects both macro- and micro-vasculatures, causing functional impairment of multiple organs. Pien Tze Huang (PZH) is a well-studied traditional Chinese medicine (TCM) with multiple pharmacological properties that produces therapeutic benefits against colorectal cancer, non-alcoholic steatohepatitis and neurodegenerative diseases. However, it is unknown how PZH affects vascular function under pathological conditions. Therefore, this study aimed to investigate the effect of PZH on endothelial function and the underlying mechanisms in db/db diabetic mice. The results showed that chronic treatment of PZH (250 mg/kg/day, 5 weeks) improved endothelial function by restoring endothelium-dependent relaxation through the activation of the Akt-eNOS pathway and inhibition of endothelial oxidative stress, which increased nitric oxide bioavailability. Furthermore, PZH treatment increased insulin sensitivity and suppressed inflammation in diabetic mice. These new findings suggest that PZH may have vaso-protective properties and the potential to protect against diabetic vasculopathy by preserving endothelial function.


Assuntos
Diabetes Mellitus Experimental , Medicamentos de Ervas Chinesas , Endotélio Vascular , Estresse Oxidativo , Animais , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Endotélio Vascular/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resistência à Insulina
3.
Diabetes ; 72(9): 1330-1342, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37347764

RESUMO

Diabetic endothelial dysfunction associated with diminished endothelial nitric oxide (NO) synthase (eNOS) activity accelerates the development of atherosclerosis and cardiomyopathy. However, the approaches to restore eNOS activity and endothelial function in diabetes remain limited. The current study shows that enhanced expression of Krüppel-like factor 2 (KLF2), a shear stress-inducible transcription factor, effectively improves endothelial function through increasing NO bioavailability. KLF2 expression is suppressed in diabetic mouse aortic endothelium. Running exercise and simvastatin treatment induce endothelial KLF2 expression in db/db mice. Adenovirus-mediated endothelium-specific KLF2 overexpression enhances both endothelium-dependent relaxation and flow-mediated dilatation, while it attenuates oxidative stress in diabetic mouse arteries. KLF2 overexpression increases the phosphorylation of eNOS at serine 1177 and eNOS dimerization. RNA-sequencing analysis reveals that KLF2 transcriptionally upregulates genes that are enriched in the cyclic guanosine monophosphate-protein kinase G-signaling pathway, cAMP-signaling pathway, and insulin-signaling pathway, all of which are the upstream regulators of eNOS activity. Activation of the phosphoinositide 3-kinase-Akt pathway and Hsp90 contributes to KLF2-induced increase of eNOS activity. The present results suggest that approaches inducing KLF2 activation, such as physical exercise, are effective to restore eNOS activity against diabetic endothelial dysfunction. ARTICLE HIGHLIGHTS: Exercise and statins restore the endothelial expression of Krüppel-like factor 2 (KLF2), which is diminished in diabetic db/db mice. Endothelium-specific overexpression of KLF2 improves endothelium-dependent relaxation and flow-mediated dilation through increasing nitric oxide bioavailability. KLF2 promotes endothelial nitric oxide synthase (eNOS) coupling and phosphorylation in addition to its known role in eNOS transcription. KLF2 upregulates the expression of several panels of genes that regulate eNOS activity.


Assuntos
Diabetes Mellitus Experimental , Óxido Nítrico Sintase Tipo III , Vasodilatação , Animais , Camundongos , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Endotélio Vascular/metabolismo , Exercício Físico , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição/metabolismo , Vasodilatação/genética
4.
Stem Cell Rev Rep ; 19(1): 46-58, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35132538

RESUMO

Dental mesenchymal stem cells (MSCs) are characterized by unlimited self-renewal ability and high multidirectional differentiation potential. Since dental MSCs can be easily isolated and exhibit a high capability to differentiate into odontogenic cells, they are considered as attractive therapeutic agents in regenerative dentistry. Recently, MSC-derived extracellular vesicles (MSC-EVs) have attracted widespread attention as carriers for cell-free therapy due to their potential functions. Many studies have shown that MSC-EVs can mediate microenvironment at tissue damage site, and coordinate the regeneration process. Additionally, MSC-EVs can mediate intercellular communication, thus affecting the phenotypes and functions of recipient cells. In this review, we mainly summarized the types of MSCs that could be potentially applied in regenerative dentistry, the possible molecular cargos of MSC-EVs, and the major effects of MSC-EVs on the therapeutic induction of osteogenic differentiation.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteogênese/genética , Terapia Baseada em Transplante de Células e Tecidos , Odontologia
5.
J Adv Res ; 43: 187-203, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36585108

RESUMO

INTRODUCTION: Atherosclerotic complications represent the leading cause of cardiovascular mortality globally. Dysfunction of endothelial cells (ECs) often initiates the pathological events in atherosclerosis. OBJECTIVES: In this study, we sought to investigate the transcriptional profile of atherosclerotic aortae, identify novel regulator in dysfunctional ECs and hence provide mechanistic insights into atherosclerotic progression. METHODS: We applied single-cell RNA sequencing (scRNA-seq) on aortic cells from Western diet-fed apolipoprotein E-deficient (ApoE-/-) mice to explore the transcriptional landscape and heterogeneity of dysfunctional ECs. In vivo validation of SOX4 upregulation in ECs were performed in atherosclerotic tissues, including mouse aortic tissues, human coronary arteries, and human renal arteries. Single-cell analysis on human aortic aneurysmal tissue was also performed. Downstream vascular abnormalities induced by EC-specific SOX4 overexpression, and upstream modulators of SOX4 were revealed by biochemical assays, immunostaining, and wire myography. Effects of shear stress on endothelial SOX4 expression was investigated by in vitro hemodynamic study. RESULTS: Among the compendium of aortic cells, mesenchymal markers in ECs were significantly enriched. Two EC subsets were subsequently distinguished, as the 'endothelial-like' and 'mesenchymal-like' subsets. Conventional assays consistently identified SOX4 as a novel atherosclerotic marker in mouse and different human arteries, additional to a cancer marker. EC-specific SOX4 overexpression promoted atherogenesis and endothelial-to-mesenchymal transition (EndoMT). Importantly, hyperlipidemia-associated cytokines and oscillatory blood flow upregulated, whereas the anti-diabetic drug metformin pharmacologically suppressed SOX4 level in ECs. CONCLUSION: Our study unravels SOX4 as a novel phenotypic regulator during endothelial dysfunction, which exacerbates atherogenesis. Our study also pinpoints hyperlipidemia-associated cytokines and oscillatory blood flow as endogenous SOX4 inducers, providing more therapeutic insights against atherosclerotic diseases.


Assuntos
Aterosclerose , Células Endoteliais , Humanos , Camundongos , Animais , Células Endoteliais/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Aorta/metabolismo , Citocinas/metabolismo , Análise de Célula Única , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo
6.
Circ Res ; 131(5): 424-441, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35899624

RESUMO

BACKGROUND: Inflamed endothelial cells (ECs) trigger atherogenesis, especially at arterial regions experiencing disturbed blood flow. UCP2 (Uncoupling protein 2), a key mitochondrial antioxidant protein, improves endothelium-dependent relaxation in obese mice. However, whether UCP2 can be regulated by shear flow is unknown, and the role of endothelial UCP2 in regulating inflammation and atherosclerosis remains unclear. This study aims to investigate the mechanoregulation of UCP2 expression in ECs and the effect of UCP2 on endothelial inflammation and atherogenesis. METHODS: In vitro shear stress simulation system was used to investigate the regulation of UCP2 expression by shear flow. EC-specific Ucp2 knockout mice were used to investigate the role of UCP2 in flow-associated atherosclerosis. RESULTS: Shear stress experiments showed that KLF2 (Krüppel-like factor 2) mediates fluid shear stress-dependent regulation of UCP2 expression in human aortic and human umbilical vein ECs. Unidirectional shear stress, statins, and resveratrol upregulate whereas oscillatory shear stress and proinflammatory stimuli inhibit UCP2 expression through altered KLF2 expression. KLF2 directly binds to UCP2 promoter to upregulate its transcription in human umbilical vein ECs. UCP2 knockdown induced expression of genes involved in proinflammatory and profibrotic signaling, resulting in a proatherogenic endothelial phenotype. EC-specific Ucp2 deletion promotes atherogenesis and collagen production. Additionally, we found endothelial Ucp2 deficiency aggravates whereas adeno-associated virus-mediated EC-Ucp2 overexpression inhibits carotid atherosclerotic plaque formation in disturbed flow-enhanced atherosclerosis mouse model. RNA-sequencing analysis revealed FoxO1 (forkhead box protein O1) as the major proinflammatory transcriptional regulator activated by UCP2 knockdown, and FoxO1 inhibition reduced vascular inflammation and disturbed flow-enhanced atherosclerosis. We showed further that UCP2 level is critical for phosphorylation of AMPK (AMP-activated protein kinase), which is required for UCP2-induced inhibition of FoxO1. CONCLUSIONS: Altogether, our studies uncover that UCP2 is novel mechanosensitive gene under the control of fluid shear stress and KLF2 in ECs. UCP2 expression is critical for endothelial proinflammatory response and atherogenesis. Therapeutic strategies enhancing UCP2 level may have therapeutic potential against atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Proteína Desacopladora 2/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Células Cultivadas , Endotélio/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Placa Aterosclerótica/metabolismo , Estresse Mecânico
7.
Prostate ; 82(1): 13-25, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34570375

RESUMO

INTRODUCTION: Androgen deprivation therapy (ADT) is a key treatment modality in the management of prostate cancer (PCa), especially for patients with metastatic disease. Increasing evidences suggest that patients who received ADT have increased incidence of diabetes, myocardial infarction, stroke, and even mortality. It is important to understand the pathophysiological mechanisms on how ADT increases cardiovascular risk and induces cardiovascular events, which would provide important information for potential implementation of preventive measures. METHODS: Twenty-six 12-week-old male SD rats were divided into four groups for different types of ADTs including: the bilateral orchidectomy group (Orx), LHRH agonist group (leuprolide), LHRH antagonist group (degarelix), and control group. After treated with drug or adjuvant injection every 3 weeks for 24 weeks, all rats were sacrificed and total blood were collected. Aorta, renal arteries, and kidney were preserved for functional assay, immunohistochemistry, western blot, and quantitative reverse-transcription polymerase chain reaction. RESULTS: In vascular reactivity assays, aorta, intrarenal, and coronary arteries of all three ADT groups showed endothelial dysfunction. AT1R and related molecules at protein and messenger RNA (mRNA) level were tested, and AT1R pathway was shown to be activated and played a role in endothelial dysfunction. Both ACE and AT1R mRNA levels were doubled in the aorta in the leuprolide group while Orx and degarelix groups showed upregulation of AT1R in the kidney tissues. By immunohistochemistry, our result showed higher expression of AT1R in the intrarenal arteries of leuprolide and degarelix groups. The role of reactive oxygen species in endothelial dysfunction was confirmed by DHE fluorescence, nitrotyrosine overexpression, and upregulation of NOX2 in the different ADT treatment groups. CONCLUSION: ADT causes endothelial dysfunction in male rats. GnRH receptor agonist compared to GnRH receptor antagonist, showed more impairment of endothelial function in the aorta and intrarenal arteries. Such change might be associated with upregulation and activation of AngII-AT1R-NOX2 induced oxidative stress in the vasculature. These results help to explain the different cardiovascular risks and outcomes related to different modalities of ADT treatment.


Assuntos
Antagonistas de Androgênios , Artérias , Endotélio Vascular , Leuprolida , Oligopeptídeos , Orquiectomia/métodos , Antagonistas de Androgênios/efeitos adversos , Antagonistas de Androgênios/análise , Antagonistas de Androgênios/metabolismo , Animais , Artérias/efeitos dos fármacos , Artérias/metabolismo , Artérias/patologia , Correlação de Dados , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Hormônio Liberador de Gonadotropina/agonistas , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Fatores de Risco de Doenças Cardíacas , Imuno-Histoquímica , Leuprolida/administração & dosagem , Leuprolida/efeitos adversos , Oligopeptídeos/administração & dosagem , Oligopeptídeos/efeitos adversos , Ratos , Espécies Reativas de Oxigênio/análise , Receptor Tipo 1 de Angiotensina/análise , Receptor Tipo 1 de Angiotensina/metabolismo
8.
Acta Pharmacol Sin ; 42(10): 1598-1609, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33495519

RESUMO

Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular diseases and increases mortality in type 2 diabetic patients. HHcy induces endoplasmic reticulum (ER) stress and oxidative stress to impair endothelial function. The glucagon-like peptide 1 (GLP-1) analog exendin-4 attenuates endothelial ER stress, but the detailed vasoprotective mechanism remains elusive. The present study investigated the beneficial effects of exendin-4 against HHcy-induced endothelial dysfunction. Exendin-4 pretreatment reversed homocysteine-induced impairment of endothelium-dependent relaxations in C57BL/6 mouse aortae ex vivo. Four weeks subcutaneous injection of exendin-4 restored the impaired endothelial function in both aortae and mesenteric arteries isolated from mice with diet-induced HHcy. Exendin-4 treatment lowered superoxide anion accumulation in the mouse aortae both ex vivo and in vivo. Exendin-4 decreased the expression of ER stress markers (e.g., ATF4, spliced XBP1, and phosphorylated eIF2α) in human umbilical vein endothelial cells (HUVECs), and this change was reversed by cotreatment with compound C (CC) (AMPK inhibitor). Exendin-4 induced phosphorylation of AMPK and endothelial nitric oxide synthase in HUVECs and arteries. Exendin-4 increased the expression of endoplasmic reticulum oxidoreductase (ERO1α), an important ER chaperone in endothelial cells, and this effect was mediated by AMPK activation. Experiments using siRNA-mediated knockdown or adenoviral overexpression revealed that ERO1α mediated the inhibitory effects of exendin-4 on ER stress and superoxide anion production, thus ameliorating HHcy-induced endothelial dysfunction. The present results demonstrate that exendin-4 reduces HHcy-induced ER stress and improves endothelial function through AMPK-dependent ERO1α upregulation in endothelial cells and arteries. AMPK activation promotes the protein folding machinery in endothelial cells to suppress ER stress.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Exenatida/farmacologia , Homocisteína/efeitos adversos , Dobramento de Proteína/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
ACS Appl Mater Interfaces ; 11(15): 13888-13904, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30516979

RESUMO

Many nanoparticle-based carriers to atherosclerotic plaques contain peptides, lipoproteins, and sugars, yet the application of DNA-based nanostructures for targeting plaques remains infrequent. In this work, we demonstrate that DNA-coated superparamagnetic iron oxide nanoparticles (DNA-SPIONs), prepared by attaching DNA oligonucleotides to poly(ethylene glycol)-coated SPIONs (PEG-SPIONs), effectively accumulate in the macrophages of atherosclerotic plaques following an intravenous injection into apolipoprotein E knockout (ApoE-/-) mice. DNA-SPIONs enter RAW 264.7 macrophages faster and more abundantly than PEG-SPIONs. DNA-SPIONs mostly enter RAW 264.7 cells by engaging Class A scavenger receptors (SR-A) and lipid rafts and traffic inside the cell along the endolysosomal pathway. ABS-SPIONs, nanoparticles with a similarly polyanionic surface charge as DNA-SPIONs but bearing abasic oligonucleotides also effectively bind to SR-A and enter RAW 264.7 cells. Near-infrared fluorescence imaging reveals evident localization of DNA-SPIONs in the heart and aorta 30 min post-injection. Aortic iron content for DNA-SPIONs climbs to the peak (∼60% ID/g) 2 h post-injection (accompanied by profuse accumulation in the aortic root), but it takes 8 h for PEG-SPIONs to reach the peak aortic amount (∼44% ID/g). ABS-SPIONs do not appreciably accumulate in the aorta or aortic root, suggesting that the DNA coating (not the surface charge) dictates in vivo plaque accumulation. Flow cytometry analysis reveals more pronounced uptake of DNA-SPIONs by hepatic endothelial cells, splenic macrophages and dendritic cells, and aortic M2 macrophages (the cell type with the highest uptake in the aorta) than PEG-SPIONs. In summary, coating nanoparticles with DNA is an effective strategy of promoting their systemic delivery to atherosclerotic plaques.


Assuntos
DNA/química , Compostos Férricos/química , Nanopartículas de Magnetita/química , Administração Intravenosa , Animais , Meios de Contraste/química , Meios de Contraste/farmacocinética , Fígado/patologia , Macrófagos/citologia , Macrófagos/metabolismo , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/análise , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Oligonucleotídeos/química , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Polietilenoglicóis/química , Células RAW 264.7 , Espectroscopia de Luz Próxima ao Infravermelho , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA