Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nanotechnology ; 35(25)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38452386

RESUMO

Pancreatic cancer's high fatality rates stem from its resistance to systemic drug delivery and aggressive metastasis, limiting the efficacy of conventional treatments. In this study, two-dimensional ultrathin silicene nanosheets were initially synthesized and near-infrared-responsive two-dimensional silicene-mesoporous silica nanoparticles (SMSNs) were successfully constructed to load the clinically-approved conventional pancreatic cancer chemotherapeutic drug gemcitabine. Experiments on nanoparticle characterization show that they have excellent photothermal conversion ability and stability. Then silicene-mesoporous silica nanoparticles loaded with gemcitabine nanoparticles (SMSN@G NPs) were employed in localized photothermal therapy to control pancreatic tumor growth and achieve therapeutic effects. Our research confirmed the functionality of SMSN@G NPs through immunoblotting and apoptotic assays, demonstrating its capacity to enhance the nuclear translocation of the NF-κB p65, further affect the protein levels of apoptosis-related genes, induce the apoptosis of tumor cells, and ultimately inhibit the growth of the tumor. Additionally, the study assessed the inhibitory role of SMSN@G NPs on pancreatic neoplasm growthin vivo, revealing its excellent biocompatibility. SMSN@G NPs have a nice application prospect for anti-pancreatic tumors.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Humanos , Gencitabina , NF-kappa B/metabolismo , NF-kappa B/farmacologia , NF-kappa B/uso terapêutico , Desoxicitidina/farmacologia , Dióxido de Silício/farmacologia , Linhagem Celular Tumoral , Apoptose , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo
2.
Technol Cancer Res Treat ; 23: 15330338231212085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38192153

RESUMO

Background: Deficiencies in DNA damage repair responses promote chemotherapy sensitivity of tumor cells. The Nibrin homolog encoding gene Nijmegen Breakage Syndrome 1 (NBS1) is a crucial component of the MRE11-RAD50-NBN complex (MRN complex) and is involved in the response to DNA double-strand breaks (DSBs) repair that has emerged as an attractive strategy to overcome tumor drug resistance, but the functional relationship between NBS1 regulated DNA damage repair and cell cycle checkpoints has not been fully elucidated. Methods: In this study, lentivirus-mediated RNAi was used to construct NBS1-downregulated cells. Flow cytometry, qPCR, and immunohistochemistry were used to explore the regulatory relationship between NBS1 and CyclinB in vivo and in vitro. Results: Our findings suggest that NBS1 deficiency leads to defective homologous recombination repair. Inhibition of NBS1 expression activates CHK1 and CyclinB signaling pathways leading to cell cycle arrest and sensitizes ovarian cancer cells to Olaparib treatment in vitro and in vivo. NBS1-deficient ovarian cancer cells tend to maintain sensitivity to chemotherapeutic drugs through activation of cell cycle checkpoints. Conclusions: NBS1 may be a potential therapeutic target for epithelial ovarian cancer as it plays a role in the regulation of the DNA damage response and cell cycle checkpoints. Suppression of NBS1 upregulates CyclinB to induce Olaparib sensitivity in ovarian cancer.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Carcinoma Epitelial do Ovário , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Ftalazinas/farmacologia , Piperazinas/farmacologia
3.
Int J Hyperthermia ; 40(1): 2278417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37945310

RESUMO

OBJECTIVE: To evaluate the effect of HIFU (High-Intensity Focused Ultrasound) therapy on the survival and prognosis of patients with inoperable pancreatic cancer, and the clinical application of serological prognostic indicators. METHODS: We retrospectively analyzed the clinicopathological features, laboratory tests and follow-ups of 192 patients. Among the patients, 57 were treated with HIFU prior to chemotherapy (HIFU-priority), and 135 patients received chemotherapy followed by HIFU (HIFU-second). Univariate and multivariate Cox regression analysis was used to determine the prognostic value of tumor inflammation-related serological markers. A nomogram model was established based on the identified prognostic factors. RESULTS: Univariate analysis showed that receiving the treatment regimen in HIFU-priority was a significant protective factor for overall survival (OS, p < 0.001). Tumor stage, high C-reactive protein (CRP), high gamma-glutamyl transferase(γGT) high carbohydrate antigen 125 (CA125), high neutrophil-to-lymphocyte ratio (NLR), high lymphocyte-to-monocyte ratio (LMR) and liver metastasis were significant risk factors for poor prognosis (p < 0.05). CRP combined with normal tumor marker CA125 (CRP + CA125) was associated with longer OS (p = 0.005). Multivariate analysis shows that HIFU-priority is a protective factor for OS (Hazard Ratio, HR: 0.38; 95% confidence interval(CI): 0.25-0.57), tumor stage (HR: 1.61; 95% CI: 1.12-2.31), CRP + CA125 (HR: 1.46; 95% CI: 1.02-2.08) and γGT (HR: 1.44; 95% CI: 1.04-1.98) are risk factors for OS and serve as independent prognostic factors in the nomogram. CONCLUSION: Early application of HIFU treatment improves the OS of patients with inoperable pancreatic cancer. CRP + CA125 and γGT are independent prognostic factors.


Assuntos
Linfócitos , Neoplasias Pancreáticas , Humanos , Prognóstico , Estudos Retrospectivos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Biomarcadores Tumorais , Neoplasias Pancreáticas
5.
Artigo em Inglês | MEDLINE | ID: mdl-37400162

RESUMO

OBJECTIVE: Huachansu, a Chinese medicine derived from the dried skin glands of toad venom, has been used in China since the 1970s to treat liver cancer. Transarterial chemoembolisation (TACE) is the standard of care for patients with unresectable hepatocellular carcinoma (HCC). This study evaluated the efficacy and safety of the combination of TACE and Huachansu in unresectable HCC. METHODS: From September 2012 to September 2016, 120 patients diagnosed with unresectable HCC were prospectively enrolled. Patients were randomised at a 1:1 ratio into the combined treatment group (Huachansu-TACE) and the TACE treatment group. The primary endpoint was progression-free survival (PFS) and secondary endpoints were overall survival (OS) and safety. The exploration outcome serum Na+/K+-ATPase (NKA) α3 at baseline and 3-month follow-ups were compared for a prognostic role. All patients were subjected to 36-month follow-up. RESULTS: A total of 112 patients who completed the study were included in the analysis. PFS and OS were significantly better in the Huachansu-TACE group than in the TACE group (p=0.029 and p=0.025, respectively), with a median PFS of 6.8 and 5.3; and a median OS of 14.8 months and 10.7 months, respectively. Although no prognostic significance was found between the baseline NKA-low and NKA-high groups in the patients' OS (p=0.48), its changes after 3-month follow-up showed significant prognostic values, of which, were 8.5 months and 23.8 months, respectively (p<0.001). Treatment-related adverse events were comparable between groups. CONCLUSIONS: Huachansu-TACE is effective in prolonging the PFS and OS in patients with unresectable HCC. TRIAL REGISTRATION NUMBER: NCT01715532.

6.
Acta Pharm Sin B ; 13(4): 1554-1567, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37139434

RESUMO

Tumor microenvironment contributes to poor prognosis of pancreatic adenocarcinoma (PAAD) patients. Proper regulation could improve survival. Melatonin is an endogenous hormone that delivers multiple bioactivities. Here we showed that pancreatic melatonin level is associated with patients' survival. In PAAD mice models, melatonin supplementation suppressed tumor growth, while blockade of melatonin pathway exacerbated tumor progression. This anti-tumor effect was independent of cytotoxicity but associated with tumor-associated neutrophils (TANs), and TANs depletion reversed effects of melatonin. Melatonin induced TANs infiltration and activation, therefore induced cell apoptosis of PAAD cells. Cytokine arrays revealed that melatonin had minimal impact on neutrophils but induced secretion of Cxcl2 from tumor cells. Knockdown of Cxcl2 in tumor cells abolished neutrophil migration and activation. Melatonin-induced neutrophils presented an N1-like anti-tumor phenotype, with increased neutrophil extracellular traps (NETs) causing tumor cell apoptosis through cell-to-cell contact. Proteomics analysis revealed that this reactive oxygen species (ROS)-mediated inhibition was fueled by fatty acid oxidation (FAO) in neutrophils, while FAO inhibitor abolished the anti-tumor effect. Analysis of PAAD patient specimens revealed that CXCL2 expression was associated with neutrophil infiltration. CXCL2, or TANs, combined with NET marker, can better predict patients' prognosis. Collectively, we discovered an anti-tumor mechanism of melatonin through recruiting N1-neutrophils and beneficial NET formation.

7.
Mol Med ; 29(1): 47, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016317

RESUMO

BACKGROUND: Protein kinases play a pivotal role in the malignant evolution of pancreatic cancer (PC) through mediating phosphorylation. Many kinase inhibitors have been developed and translated into clinical use, while the complex pathology of PC confounds their clinical efficacy and warrants the discovery of more effective therapeutic targets. METHODS: Here, we used the Gene Expression Omnibus (GEO) database and protein kinase datasets to map the PC-related protein kinase-encoding genes. Then, applying Gene Expression and Profiling Interactive Analysis (GEPIA), GEO and Human Protein Atlas, we evaluated gene correlation, gene expression at protein and mRNA levels, as well as survival significance. In addition, we performed protein kinase RIPK2 knockout and overexpression to observe effects of its expression on PC cell proliferation, migration and invasion in vitro, as well as cell apoptosis, reactive oxygen species (ROS) production and autophagy. We established PC subcutaneous xenograft and liver metastasis models to investigate the effects of RIPK2 knockout on PC growth and metastasis. Co-immunoprecipitation and immunofluorescence were utilized to explore the interaction between protein kinases RIPK2 and PRKCI. Polymerase chain reaction and immunoblotting were used to evaluate gene expression and protein phosphorylation level. RESULTS: We found fourteen kinases aberrantly expressed in human PC and nine kinases with prognosis significance. Among them, RIPK2 with both serine/threonine and tyrosine activities were validated to promote PC cells proliferation, migration and invasion. RIPK2 knockout could inhibit subcutaneous tumor growth and liver metastasis of PC. In addition, RIPK2 knockout suppressed autophagosome formation, increased ROS production and PC cell apoptosis. Importantly, another oncogenic kinase PRKCI could interact with RIPK2 to enhance the phosphorylation of downstream NF-κB, JNK and ERK. CONCLUSION: Paired protein kinases PRKCI-RIPK2 with multiple phosphorylation activities represent a new pathological mechanism in PC and could provide potential targets for PC therapy.


Assuntos
Neoplasias Hepáticas , Neoplasias Pancreáticas , Proteína Quinase C , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Humanos , Linhagem Celular Tumoral , Neoplasias Hepáticas/secundário , NF-kappa B/metabolismo , Neoplasias Pancreáticas/patologia , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Quinase C/genética , Animais , Neoplasias Pancreáticas
8.
BMC Cancer ; 23(1): 139, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765322

RESUMO

The immunotherapy efficacy on pancreatic cancer remains unsatisfactory. Therefore, it is still necessary to further clarify the pancreatic immune cell infiltration and search for immune-related prognostic indicators. We analyzed the 135 pancreatic cancer patients' data retrieved from the TCGA database for the immune cell infiltration, tumor microenvironment score and the correlation of the immune cells, followed by identification of prognostic immune clusters and genes clusters. The R language was used for the immune score calculation, and immune cells proportion related survival differences identification. The function of immune cells was verified through datasets in the GEO database and in vivo experiments. The results showed that M0 Macrophages had negative relations to CD8 + T cells and immune scores. There were differences in median survival in ICI clusters, gene clusters, and immune score groups (p < 0.05). M0 macrophages accounted for more than 9.8%, indicating a poor prognosis, while T cells accounted for more than 9.2%, indicating a good prognosis. In vivo results showed that M0 macrophages promote pancreatic cancer growth. Elimination of M0 macrophages may be a hopeful strategy against pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Humanos , Prognóstico , Neoplasias Pancreáticas/genética , Pâncreas , Linfócitos T CD8-Positivos , Microambiente Tumoral/genética , Neoplasias Pancreáticas
9.
Int J Cancer ; 152(5): 1013-1024, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36274627

RESUMO

To develop a superior diagnostic approach for pancreatic adenocarcinoma (PAAC), the present study prospectively included 338 PAAC patients, 294 normal healthy volunteers (NHV), 122 chronic pancreatitis (CP) patients and 100 patients with non-PAAC malignancies. In the identification phase, HuProt Human Proteome Microarray, comprising 21 065 proteins, was used to identify serum tumor-associated autoantibodies (TAAbs) candidates differentiating PAAC (n = 30) from NHV (n = 30). A PAAC-focused array containing 165 differentially expressed TAAbs identified was subsequently adopted in the validation phase (n = 712) for specificity and sensitivities. The multivariate TAAbs signature for differentiation PAAC from controls (NHV + CP) identified five candidates, namely the IgG-type TAAbs against CLDN17, KCNN3, SLAMF7, SLC22A11 and OR51F2. Multivariate logistic performance model of y = (22.893 × CA19-9 + 0.68 × CLDN17 - 4.012) showed a significant better diagnostic accuracy than that of CA19-9 and CLDN17 in differentiating PAAC from controls (NHV + CP) (AUC = 0.97, 0.92 and 0.82, respectively, P-value < .0001). We further tested the autoantigen level of CLDN17 by ELISA in 82 sera samples from PAAC (n = 42), CP (n = 24) and NHV (n = 16). Similarly, the model showed superior diagnostic performance than that of CA19-9 and CLDN17 (AUC = 0.93, 0.83 and 0.81, respectively, P-value < .0001) in differentiating PAAC from controls. In conclusion, our study is the first to characterize the circulating TAAbs signatures in PAAC. The results showed that CLDN17 combined with CA19-9 provided potentially clinical value and may serve as noninvasive novel biomarkers for PAAC diagnosis.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Pancreatite Crônica , Humanos , Neoplasias Pancreáticas/patologia , Autoanticorpos , Adenocarcinoma/diagnóstico , Biomarcadores Tumorais , Antígeno CA-19-9 , Pancreatite Crônica/diagnóstico , Neoplasias Pancreáticas
10.
Front Oncol ; 12: 969731, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263225

RESUMO

Fibroblast activation protein-α (FAP) is a type II transmembrane serine protease that has specific endopeptidase activity. Given its well-established selective expression in the activated stromal fibroblasts of epithelial cancers, although not in quiescent fibroblasts, FAP has received substantial research attention as a diagnostic marker and therapeutic target. Pancreatic cancer is characterized by an abundant fibrotic or desmoplastic stroma, leading to rapid progression, therapeutic resistance, and poor clinical outcomes. Numerous studies have revealed that the abundant expression of FAP in cancer cells, circulating tumor cells, stromal cells, and cancer-associated fibroblasts (CAFs) of pancreatic adenocarcinoma is implicated in diverse cancer-related signaling pathways, contributing to cancer progression, invasion, migration, metastasis, immunosuppression, and resistance to treatment. In this article, we aim to systematically review the recent advances in research on FAP in pancreatic adenocarcinoma, including its utility as a diagnostic marker, therapeutic potential, and correlation with prognosis. We also describe the functional role of FAP-overexpressing stromal cells, particulary CAFs, in tumor immuno- and metabolic microenvironments, and summarize the mechanisms underlying the contribution of FAP-overexpressing CAFs in pancreatic cancer progression and treatment resistance. Furthermore, we discuss whether targeting FAP-overexpressing CAFs could represent a potential therapeutic strategy and describe the development of FAP-targeted probes for diagnostic imaging. Finally, we assess the emerging basic and clinical studies regarding the bench-to-bedside translation of FAP in pancreatic cancer.

11.
Biochim Biophys Acta Rev Cancer ; 1877(5): 188793, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36089205

RESUMO

Methionine adenosyltransferases (MATs) synthesize S-adenosylmethionine (SAM) from methionine, which provides methyl groups for DNA, RNA, protein, and lipid methylation. MATs play a critical role in cellular processes, including growth, proliferation, and differentiation, and have been implicated in tumour development and progression. The expression of MATs is altered in hepatobiliary and pancreatic (HBP) cancers, which serves as a rare biomarker for early diagnosis and prognosis prediction of HBP cancers. Independent of SAM depletion in cells, MATs are often dysregulated at the transcriptional, post-transcriptional, and post-translational levels. Dysregulation of MATs is involved in carcinogenesis, chemotherapy resistance, T cell exhaustion, activation of tumour-associated macrophages, cancer stemness, and activation of tumourigenic pathways. Targeting MATs both directly and indirectly is a potential therapeutic strategy. This review summarizes the dysregulations of MATs, their proposed mechanism, diagnostic and prognostic roles, and potential therapeutic effects in context of HBP cancers.


Assuntos
Neoplasias Gastrointestinais , Neoplasias Pancreáticas , Humanos , Lipídeos , Metionina , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , RNA , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/uso terapêutico
12.
J Ethnopharmacol ; 298: 115586, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35931303

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xiang-lian pill, consisting of Coptis chinensis Franch. coprocessed with Tetradium ruticarpum (A.Juss.) T.G.Hartley (Yu-huang-lian) and Aucklandia lappa DC. (Mu-xiang), is traditionally used to relieve fever, abdominal pain, and gastrointestinal inflammatory symptoms observed in patients with malignancies of the gastrointestinal tract. Each of the three herbs contained in Xiang-lian pill has been indicated to have anticancer effects on a variety of cancers, but its effects on pancreatic cancer remain unexplored. The main extracts of these herbs have anti-pancreatic cancer effects, but the comprehensive mechanism of this compound prescription of Xiang-lian pill in pancreatic cancer remains to be revealed. AIM OF THE STUDY: To explore the main active ingredients, potential anti-pancreatic cancer targets, and related mechanisms of the Xiang-lian pill and to determine its therapeutic value in vivo. MATERIALS AND METHODS: Network pharmacology and bioinformatics analysis were applied to screen the potential effective ingredients and key targets. Liquid/gas-mass spectrometry was performed for ingredients validation. Molecular docking and the cellular thermal shift assay were performed to test the binding efficiency between ingredients and targets. A murine pancreatic cancer model was established and administered different doses of the Xiang-lian pill. Hematoxylin-eosin staining was used for histopathological observation. Immunohistochemistry and immunoblotting were conducted for target validation. In vitro studies (cell viability and clonogenicity assays) were conducted to investigate the impact of three main ingredients in Xiang-lian pill on pancreatic cancer cells. PTGS2 overexpression was performed to reversely confirm the antitumor mechanisms of rutaecarpine as a specific PTGS2 inhibitor. RESULTS: Xiang-lian pill suppressed pancreatic cancer growth in the dose range of 0.78-2.34g/kg with no significant toxicity. Sixteen potentially active ingredients and 26 corresponding therapeutic targets for pancreatic cancer were identified. PTGS2, PTGS1, KCNH2, PRSS1, and HSP90AA1 were the top 5 significant genes targeted by the Xiang-lian pill. Evodiamine, rutaecarpine and stigmasterol bound to PTGS2 and PTGS1 with different affinities and inhibited pancreatic cancer cell proliferation. The PTGS2-associated metabolic pathway MEK/ERK was downregulated by rutaecarpine in vitro and the Xiang-lian pill in vivo. CONCLUSIONS: Xiang-lian pill mainly regulates inflammation, apoptosis, metastasis, and metabolism to exert an antitumor effect. The main active ingredients in Xiang-lian pill exhibit antitumor roles through directly binding to key targets in pancreatic cancer. PTGS2 mediated MEK/ERK inhibition by rutaecarpine represents a key therapeutic mechanism of Xiang-lian pill.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Pancreáticas , Animais , Ciclo-Oxigenase 2 , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno , Simulação de Acoplamento Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas
13.
Front Oncol ; 12: 947238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35957897

RESUMO

Background: Damp-heat syndrome is one of the most important syndrome types in the traditional Chinese medicine (TCM) syndrome differentiation and treatment system, as well as the core pathogenesis of pancreatic cancer (PC) which remains a challenge to medical researchers due to its insidious onset and poor prognosis. Great attention has been given to the impact of damp-heat syndrome on tumorigenesis and progression, but less attention has been given to damp-heat modeling per se. Studying PC in a proper damp-heat syndrome animal model can recapitulate the actual pathological process and contribute to treatment strategy improvement. Methods: Here, an optimized damp-heat syndrome mouse model was established based on our prior experience. The Fibonacci method was applied to determine the maximum tolerated dosage of alcohol for mice. Damp-heat syndrome modeling with the old and new methods was performed in parallel of comparative study about general appearance, food intake, water consumption and survival. Major organs, including the liver, kidneys, lungs, pancreas, spleen, intestines and testes, were collected for histological evaluation. Complete blood counts and biochemical tests were conducted to characterize changes in blood circulation. PC cells were subcutaneously inoculated into mice with damp-heat syndrome to explore the impact of damp-heat syndrome on PC growth. Hematoxylin-eosin staining, Masson staining and immunohistochemistry were performed for pathological evaluation. A chemokine microarray was applied to screen the cytokines mediating the proliferation-promoting effects of damp-heat syndrome, and quantitative polymerase chain reaction and Western blotting were conducted for results validation. Results: The new modeling method has the advantages of mouse-friendly features, easily accessible materials, simple operation, and good stability. More importantly, a set of systematic indicators was proposed for model evaluation. The new modeling method verified the pancreatic tumor-promoting role of damp-heat syndrome. Damp-heat syndrome induced the proliferation of cancer-associated fibroblasts and promoted desmoplasia. In addition, circulating and tumor-located chemokine levels were altered by damp-heat syndrome, characterized by tumor promotion and immune suppression. Conclusions: This study established a stable and reproducible murine model of damp-heat syndrome in TCM with systematic evaluation methods. Cancer associated fibroblast-mediated desmoplasia and chemokine production contribute to the tumor-promoting effect of damp-heat syndrome on PC.

14.
J Ethnopharmacol ; 297: 115516, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35817247

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Qingyihuaji decoction (QYHJ) is composed of seven herbs: Scutellaria barbata D.Don (Banzhilian, HSB), Gynostemma pentaphyllum (Thunb.) Makino (Jiaogulan, GP), Oldenlandia diffusa (Willd.) Roxb. (Baihuasheshecao, HDH), Ganoderma lucidum (Leyss. ex Fr.) Karst. (Lingzhi, GL), Myristica fragrans Houtt. (Doukou, AK), and Amorphophallus kiusianus (Makino) Makino (Sheliugu, RA), and Coix lacryma-jobi var. ma-yuen (Rom.Caill.) Stapf (Yiyiren, CL). QYHJ has been reported to exhibit clinical efficacy in the treatment of pancreatic adenocarcinoma (PAAD). However, the molecular mechanism remains unclear. AIM OF THE STUDY: This study explores the therapeutic mechanism of QYHJ in the treatment of PAAD using network pharmacology to identify related targets and pathways in vivo and in vitro. MATERIALS AND METHODS: The bioactive compounds of QYHJ were retrieved and screened using the ADME network pharmacology approach, followed by compound-target prediction and overlapping genes between PAAD oncogenes and QYHJ target genes. The compound-target-pathway network was established using The KEGG pathway, GO analysis, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analysis to identify potential action pathways. The effects of QYHJ on PAAD were evaluated in vivo and in vitro, and the predicted targets and potential pathways related to QYHJ in PAAD treatment were evaluated using qRT-PCR and immunoblotting. RESULTS: A total of 68 bioactive compounds of QYHJ fulfilled the ADME screening criterion, and their respective 242 target genes were retrieved. The compound-target-disease network identified 11 possible target genes. The KEGG pathway analysis showed significant enrichment of pathways in cancers, involving regulating cancer-related pathways of inflammation, oxidative stress, and apoptosis. Furthermore, QYHJ inhibited PAAD growth in vivo; suppressed cell proliferation, invasion, and migration of PAAD; and induced cellular apoptosis in vitro. The qRT-PCR results showed that QYHJ suppressed the mRNA expression of ICAM1, VCAM1, and Bcl2, and increased that of HMOX1 and NQO1. Immunoblotting revealed changes in the PI3K/AKT/mTOR, Keap1/Nrf2/HO-1/NQO1, and Bcl2/Bax pathways upon QYHJ treatment. CONCLUSIONS: QYHJ can suppress PAAD growth and progression through various mechanisms, including anti-inflammation and apoptosis-induction.


Assuntos
Adenocarcinoma , Medicamentos de Ervas Chinesas , Neoplasias Pancreáticas , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Farmacologia em Rede , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias Pancreáticas
15.
Chin J Integr Med ; 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35723813

RESUMO

Cancer is one of the deadliest diseases affecting the health of human beings. With limited therapeutic options available, complementary and alternative medicine has been widely adopted in cancer management and is increasingly becoming accepted by both patients and healthcare workers alike. Chinese medicine characterized by its unique diagnostic and treatment system is the most widely applied complementary and alternative medicine. It emphasizes symptoms and ZHENG (syndrome)-based treatment combined with contemporary disease diagnosis and further stratifies patients into individualized medicine subgroups. As a representative cancer with the highest degree of malignancy, pancreatic cancer is traditionally classified into the "amassment and accumulation". Emerging perspectives define the core pathogenesis of pancreatic cancer as "dampness-heat" and the respective treatment "clearing heat and resolving dampness" has been demonstrated to prolong survival in pancreatic cancer patients, as has been observed in many other cancers. This clinical advantage encourages an exploration of the essence of dampness-heat ZHENG (DHZ) in cancer and investigation into underlying mechanisms of action of herbal formulations against dampness-heat. However, at present, there is a lack of understanding of the molecular characteristics of DHZ in cancer and no standardized and widely accepted animal model to study this core syndrome in vivo. The shortage of animal models limits the ability to uncover the antitumor mechanisms of herbal medicines and to assess the safety profile of the natural products derived from them. This review summarizes the current research on DHZ in cancer in terms of the clinical aspects, molecular landscape, and animal models. This study aims to provide comprehensive insight that can be used for the establishment of a future standardized ZHENG-based cancer animal model.

16.
J Ethnopharmacol ; 287: 114691, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-34597654

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Matrine injection is a complex mixture of plant bioactive substances extracted from Sophora flavescens Aiton and Smilax glabra Roxb. Since its approval by the Chinese Food and Drug Administration (CFDA) in 1995, Matrine injection has been clinically used as a complementary and alternative treatment for various cancers; however, the underlying mechanism of pancreatic cancer treatment is yet to be elucidated. AIM OF THE STUDY: The present study explores the potential mechanism of matrine injection on pancreatic cancer through network pharmacology technique and in vitro experimental validation. MATERIALS AND METHODS: Genes differentially expressed in pancreatic cancer were obtained from the Gene Expression Omnibus (GEO) database (GSE101448). The potential active components of matrine injection were selected following a literature search, and target prediction was performed by the SwissTarget Prediction database. Overlapping genes associated with survival were screened by the Gene Expression Profiling Interactive Analysis (GEPIA) database. In vitro experimental validation was performed with cell counting kit-8 (CCK-8) assay, apoptosis detection, cell cycle analysis, immunoblotting, and co-immunoprecipitation of the identified proteins. RESULTS: One thousand seven hundred genes differentially expressed among pancreatic tumor and non-tumor tissues were screened out. Sixteen active components and 226 predicted target genes were identified in matrine injection. A total of 25 potential target genes of matrine injection for the treatment of pancreatic cancer were obtained. Among them, the prognostic target genes carbonic anhydrase 9 (CA9) and carbonic anhydrase 12 (CA12) based on the GEPIA database are differently expressed in tumors compared to adjacent normal tissue. In vitro experiments, the results of CCK-8 assay, apoptosis and cell cycle analysis, immunoblotting, and co-immunoprecipitation showed that matrine injection inhibited Capan-1 and Mia paca-2 proliferation, arrested the cell cycle at the S phase, and induced apoptosis through up-regulated CA12 and down-regulated CA9. CONCLUSIONS: In this study, bioinformatics and network pharmacology were applied to explore the treatment mechanism on pancreatic cancer with matrine injection. This study demonstrated that matrine injection inhibited proliferation, arrested the cell cycle, and induced apoptosis of pancreatic cancer cells. The mechanism may be related to the induction of CA12 over-expression, and CA9 reduced expression. As novel targets for pancreatic cancer treatment, Carbonic anhydrases require further study.


Assuntos
Alcaloides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Anidrases Carbônicas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Quinolizinas/farmacologia , Sophora/química , Alcaloides/isolamento & purificação , Antígenos de Neoplasias/genética , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Anidrase Carbônica IX/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Farmacologia em Rede , Neoplasias Pancreáticas/genética , Quinolizinas/isolamento & purificação , Regulação para Cima/efeitos dos fármacos , Matrinas
17.
BMC Med Genomics ; 14(1): 189, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315468

RESUMO

BACKGROUND: SMARCAs, belonged to SWI/SNF2 subfamilies, are critical to cellular processes due to their modulation of chromatin remodeling processes. Although SMARCAs are implicated in the tumor progression of various cancer types, our understanding of how those members affect pancreatic carcinogenesis is quite limited and improving this requires bioinformatics analysis and biology approaches. METHODS: To address this issue, we investigated the transcriptional and survival data of SMARCAs in patients with pancreatic cancer using ONCOMINE, GEPIA, Human Protein Atlas, and Kaplan-Meier plotter. We further verified the effect of significant biomarker on pancreatic cancer in vitro through functional experiment. RESULTS: The Kaplan-Meier curve and log-rank test analyses showed a positive correlation between SMARCA1/2/3/SMARCAD1 and patients' overall survival (OS). On the other hand, mRNA expression of SMARCA6 (also known as HELLS) showed a negative correlation with OS. Meanwhile, no significant correlation was found between SMARCA4/5/SMARCAL1 and tumor stages and OS. The knockdown of HELLS impaired the colony formation ability, and inhibited pancreatic cancer cell proliferation by arresting cells at S phase. CONCLUSIONS: Data mining analysis and cell function research demonstrated that HELLS played oncogenic roles in the development and progression of pancreatic cancer, and serve as a poor prognostic biomarker for pancreatic cancer. Our work laid a foundation for further clinical applications of HELLS in pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Neoplasias Pancreáticas
18.
Artigo em Inglês | MEDLINE | ID: mdl-34257674

RESUMO

Citrus folium and its main ingredient nobiletin (NOB) have received widespread attention in recent years due to their antitumor effects. The antitumor effect of Citrus folium is related to the traditional use, mainly in its Chinese medicinal properties of soothing the liver and promoting qi, resolving phlegm, and dispelling stagnation. Some studies have proved that Citrus folium and NOB are more effective for triple-negative breast cancer (TNBC), which is related to the syndrome of stagnation of liver qi. From the perspective of modern biomedical research, NOB has anticancer effects. Its potential molecular mechanisms include inhibition of the cell cycle, induction of apoptosis, and inhibition of angiogenesis, invasion, and migration. Citrus folium and NOB can also reduce the side effects of chemotherapy drugs and reverse multidrug resistance (MDR). However, more research studies are needed to clarify the underlying mechanisms. The modern evidence of Citrus folium and NOB in breast cancer treatment has a strong connection with the traditional concepts and laws of applying Citrus folium in Chinese medicine (CM). As a low-toxic anticancer drug candidate, NOB and its structural changes, Citrus folium, and compound prescriptions will attract scientists to use advanced technologies such as genomics, proteomics, and metabolomics to study its potential anticancer effects and mechanisms. On the contrary, there are relatively few studies on the anticancer effects of Citrus folium and NOB in vivo. The clinical application of Citrus folium and NOB as new cancer treatment drugs requires in vivo verification and further anticancer mechanism research. This review aims to provide reference for the treatment of breast cancer by Chinese medicine.

19.
Clin Transl Med ; 11(6): e467, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34185423

RESUMO

BACKGROUND: Pancreatic adenocarcinoma (PAAD) a highly lethal malignancy. The current use of clinical parameters may not accurately predict the clinical outcome, which further renders the unsatisfactory therapeutic outcome. METHODS: In this study, we retrospectively analyzed the clinical-pathological characteristics and prognosis of 253 PAAD patients. Univariate, multivariate, and Kaplan-Meier survival analyses were conducted to assess risk factors and clinical outcomes. For functional study, we performed bidirectional genetic manipulation of lactate dehydrogenase A (LDHA) in PAAD cell lines to measure PAAD progression by both in vitro and in vivo assays. RESULTS: LDHA is particularly overexpressed in PAAD tissues and elevated serum LDHA-transcribed isoenzymes-5 (LDH-5) was associated with poorer patients' clinical outcomes. Genetic overexpression of LDHA promoted the proliferation and invasion in vitro, and tumor growth and metastasis in vivo in murine PAAD orthotopic models, while knockdown of LDHA exhibited opposite effects. LDHA-induced L-lactate production was responsible for the LDHA-facilitated PAAD progression. Mechanistically, LDHA overexpression reduced the phosphorylation of metabolic regulator AMPK and promoted the downstream mTOR phosphorylation in PAAD cells. Inhibition of mTOR repressed the LDHA-induced proliferation and invasion. A natural product berberine was selected as functional inhibitor of LDHA, which reduced activity and expression of the protein in PAAD cells. Berberine inhibited PAAD cells proliferation and invasion in vitro, and suppressed tumor progression in vivo. The restoration of LDHA attenuated the suppressive effect of berberine on PAAD. CONCLUSIONS: Our findings suggest that LDHA may be a novel biomarker and potential therapeutic target of human PAAD.


Assuntos
Adenocarcinoma/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , L-Lactato Desidrogenase/antagonistas & inibidores , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Adenocarcinoma/enzimologia , Adenocarcinoma/patologia , Animais , Apoptose , Movimento Celular , Proliferação de Células , Feminino , Glicólise , Humanos , Isoenzimas , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/secundário , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Prognóstico , Bibliotecas de Moléculas Pequenas/farmacologia , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Front Cell Dev Biol ; 9: 640786, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150748

RESUMO

Activation of inflammasomes has been reported in human pancreatic adenocarcinoma (PAAD); however, the expression pattern and functional role of inflammasome-related proteins in PAAD have yet to be identified. In this study, we systemically examined the expression and role of different inflammasome proteins by retrieving human expression data. Several genes were found to be differentially expressed; however, only interferon-inducible protein 16 (IFI16) expression was found to be adversely correlated with the overall survival of PAAD patients. Overexpression of IFI16 significantly promoted tumor growth, increased tumor size and weight in the experimental PAAD model of mice, and specifically increased the population of tumor-associated macrophages (TAMs) in the tumor microenvironment. Depletion of TAMs by injection of liposome clodronate attenuated the IFI16 overexpression-induced tumor growth in PAAD. In vitro treatment of conditioned medium from IFI16-overexpressing PAAD cells induced maturation, proliferation, and migration of bone marrow-derived monocytes, suggesting that IFI16 overexpression resulted in cytokine secretion that favored the TAM population. Further analysis suggested that IFI16 overexpression activated inflammasomes, thereby increasing the release of IL-1ß. Neutralization of IL-1ß attenuated TAM maturation, proliferation, and migration induced by the conditioned medium from IFI16-overexpressing PAAD cells. Additionally, knockdown of IFI16 could significantly potentiate gemcitabine treatment in PAAD, which may be associated with the reduced infiltration of TAMs in the tumor microenvironment. The findings of our study shed light on the role of IFI16 as a potential therapeutic target for PAAD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA