Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Life (Basel) ; 14(8)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39202777

RESUMO

Prostate cancer (PCa) is a multifactorial disease influenced by genetic, environmental, and immunological factors. Genetic polymorphisms in the interleukin-10 (IL-10) gene have been implicated in PCa susceptibility, development, and progression. This study aims to assess the contributions of three IL-10 promoter single nucleotide polymorphisms (SNPs), A-1082G (rs1800896), T-819C (rs3021097), and A-592C (rs1800872), to the risk of PCa in Taiwan. The three IL-10 genotypes were determined using PCR-RFLP methodology and were evaluated for their contributions to PCa risk among 218 PCa patients and 436 non-PCa controls. None of the three IL-10 SNPs were significantly associated with the risks of PCa (p all > 0.05) in the overall analyses. However, the GG at rs1800896 combined with smoking behavior was found to significantly increase the risk of PCa by 3.90-fold (95% confidence interval [95% CI] = 1.28-11.89, p = 0.0231). In addition, the rs1800896 AG and GGs were found to be correlated with the late stages of PCa (odds ratio [OR] = 1.90 and 6.42, 95% CI = 1.05-3.45 and 2.30-17.89, p = 0.0452 and 0.0003, respectively). The IL-10 promoter SNP, A-1082G (rs1800896), might be a risk factor for PCa development among smokers and those at late stages of the disease. These findings should be validated in larger and more diverse populations.

2.
Diagnostics (Basel) ; 13(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38132274

RESUMO

Lung cancer (LC) stands as the foremost cause of cancer-related fatality rates worldwide. Early diagnosis significantly enhances patient survival rate. Nowadays, low-dose computed tomography (LDCT) is widely employed on the chest as a tool for large-scale lung cancer screening. Nonetheless, a large amount of chest radiographs creates an onerous burden for radiologists. Some computer-aided diagnostic (CAD) tools can provide insight to the use of medical images for diagnosis and can augment diagnostic speed. However, due to the variation in the parameter settings across different patients, substantial discrepancies in image voxels persist. We found that different voxel sizes can create a compromise between model generalization and diagnostic efficacy. This study investigates the performance disparities of diagnostic models trained on original images and LDCT images reconstructed to different voxel sizes while making isotropic. We examined the ability of our method to differentiate between benign and malignant nodules. Using 11 features, a support vector machine (SVM) was trained on LDCT images using an isotropic voxel with a side length of 1.5 mm for 225 patients in-house. The result yields a favorable model performance with an accuracy of 0.9596 and an area under the receiver operating characteristic curve (ROC/AUC) of 0.9855. In addition, to furnish CAD tools for clinical application, future research including LDCT images from multi-centers is encouraged.

3.
Diagnostics (Basel) ; 13(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37835785

RESUMO

The use of deep learning methods for the automatic detection and quantification of bone metastases in bone scan images holds significant clinical value. A fast and accurate automated system for segmenting bone metastatic lesions can assist clinical physicians in diagnosis. In this study, a small internal dataset comprising 100 breast cancer patients (90 cases of bone metastasis and 10 cases of non-metastasis) and 100 prostate cancer patients (50 cases of bone metastasis and 50 cases of non-metastasis) was used for model training. Initially, all image labels were binary. We used the Otsu thresholding method or negative mining to generate a non-metastasis mask, thereby transforming the image labels into three classes. We adopted the Double U-Net as the baseline model and made modifications to its output activation function. We changed the activation function to SoftMax to accommodate multi-class segmentation. Several methods were used to enhance model performance, including background pre-processing to remove background information, adding negative samples to improve model precision, and using transfer learning to leverage shared features between two datasets, which enhances the model's performance. The performance was investigated via 10-fold cross-validation and computed on a pixel-level scale. The best model we achieved had a precision of 69.96%, a sensitivity of 63.55%, and an F1-score of 66.60%. Compared to the baseline model, this represents an 8.40% improvement in precision, a 0.56% improvement in sensitivity, and a 4.33% improvement in the F1-score. The developed system has the potential to provide pre-diagnostic reports for physicians in final decisions and the calculation of the bone scan index (BSI) with the combination with bone skeleton segmentation.

4.
Diagnostics (Basel) ; 13(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37443695

RESUMO

Bone Scan Index (BSI) is an image biomarker for quantifying bone metastasis of cancers. To compute BSI, not only the hotspots (metastasis) but also the bones have to be segmented. Most related research focus on binary classification in bone scintigraphy: having metastasis or none. Rare studies focus on pixel-wise segmentation. This study compares three advanced convolutional neural network (CNN) based models to explore bone segmentation on a dataset in-house. The best model is Mask R-CNN, which reaches the precision, sensitivity, and F1-score: 0.93, 0.87, 0.90 for prostate cancer patients and 0.92, 0.86, and 0.88 for breast cancer patients, respectively. The results are the average of 10-fold cross-validation, which reveals the reliability of clinical use on bone segmentation.

5.
J Pers Med ; 12(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36143163

RESUMO

The five-year overall survival rate of patients without neck lymph node recurrence is over 50% higher than those with lymph node metastasis. This study aims to investigate the prognostic impact of computed tomogram (CT)-based radiomics on the outcome of metastatic neck lymph nodes in patients with head and neck cancer (HNC) receiving definitive radiotherapy or chemoradiotherapy for organ preservation. The pretreatment 18F-FDG PET/CT of 79 HNC patients was retrospectively analyzed with radiomics extractors. The imbalanced data was processed using two techniques: over-sampling and under-sampling, after which the prediction model was established with a machine learning model using the XGBoost algorithm. The imbalanced dataset strategies slightly decreased the specificity but greatly improved the sensitivity. To have a higher chance of predicting neck cancer recurrence, however, clinical data combined with CT-based radiomics provides the best prediction effect. The original dataset performed was as follows: accuracy = 0.76 ± 0.07, sensitivity = 0.44 ± 0.22, specificity = 0.88 ± 0.06. After we used the over-sampling technique, the accuracy, sensitivity, and specificity values were 0.80 ± 0.05, 0.67 ± 0.11, and 0.84 ± 0.05, respectively. Furthermore, after using the under-sampling technique, the accuracy, sensitivity, and specificity values were 0.71 ± 0.09, 0.73 ± 0.13, and 0.70 ± 0.13, respectively. The outcome of metastatic neck lymph nodes in patients with HNC receiving radiotherapy for organ preservation can be predicted based on the results of machine learning. This way, patients can be treated alternatively. A further external validation study is required to verify our findings.

6.
Diagnostics (Basel) ; 11(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33803921

RESUMO

This study aimed to explore efficient ways to diagnose bone metastasis early using bone scintigraphy images through negative mining, pre-training, the convolutional neural network, and deep learning. We studied 205 prostate cancer patients and 371 breast cancer patients and used bone scintigraphy data from breast cancer patients to pre-train a YOLO v4 with a false-positive reduction strategy. With the pre-trained model, transferred learning was applied to prostate cancer patients to build a model to detect and identify metastasis locations using bone scintigraphy. Ten-fold cross validation was conducted. The mean sensitivity and precision rates for bone metastasis location detection and classification (lesion-based) in the chests of prostate patients were 0.72 ± 0.04 and 0.90 ± 0.04, respectively. The mean sensitivity and specificity rates for bone metastasis classification (patient-based) in the chests of prostate patients were 0.94 ± 0.09 and 0.92 ± 0.09, respectively. The developed system has the potential to provide pre-diagnostic reports to aid in physicians' final decisions.

7.
Sensors (Basel) ; 20(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858982

RESUMO

In this study, we proposed a semi-automated and interactive scheme for organ contouring in radiotherapy planning for patients with non-small cell lung cancers. Several organs were contoured, including the lungs, airway, heart, spinal cord, body, and gross tumor volume (GTV). We proposed some schemes to automatically generate and vanish the seeds of the random walks (RW) algorithm. We considered 25 lung cancer patients, whose computed tomography (CT) images were obtained from the China Medical University Hospital (CMUH) in Taichung, Taiwan. The manual contours made by clinical oncologists were taken as the gold standard for comparison to evaluate the performance of our proposed method. The Dice coefficient between two contours of the same organ was computed to evaluate the similarity. The average Dice coefficients for the lungs, airway, heart, spinal cord, and body and GTV segmentation were 0.92, 0.84, 0.83, 0.73, 0.85 and 0.66, respectively. The computation time was between 2 to 4 min for a whole CT sequence segmentation. The results showed that our method has the potential to assist oncologists in the process of radiotherapy treatment in the CMUH, and hopefully in other hospitals as well, by saving a tremendous amount of time in contouring.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Planejamento da Radioterapia Assistida por Computador , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Taiwan , Tomografia Computadorizada por Raios X
8.
Sci Rep ; 7(1): 15108, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29118335

RESUMO

Lung cancer has a very high prevalence of brain metastasis, which results in a poor clinical outcome. Up-regulation of a disintegrin and metalloproteinase 9 (ADAM9) in lung cancer cells is correlated with metastasis to the brain. However, the molecular mechanism underlying this correlation remains to be elucidated. Since angiogenesis is an essential step for brain metastasis, microarray experiments were used to explore ADAM9-regulated genes that function in vascular remodeling. The results showed that the expression levels of vascular endothelial growth factor A (VEGFA), angiopoietin-2 (ANGPT2), and tissue plasminogen activator (PLAT) were suppressed in ADAM9-silenced cells, which in turn leads to decreases in angiogenesis, vascular remodeling, and tumor growth in vivo. Furthermore, simultaneous high expression of ADAM9 and VEGFA or of ADAM9 and ANGPT2 was correlated with poor prognosis in a clinical dataset. These findings suggest that ADAM9 promotes tumorigenesis through vascular remodeling, particularly by increasing the function of VEGFA, ANGPT2, and PLAT.


Assuntos
Proteínas ADAM/genética , Angiopoietina-2/genética , Neoplasias Pulmonares/genética , Proteínas de Membrana/genética , Ativador de Plasminogênio Tecidual/genética , Fator A de Crescimento do Endotélio Vascular/genética , Remodelação Vascular/genética , Células A549 , Proteínas ADAM/metabolismo , Angiopoietina-2/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Biomed Tech (Berl) ; 62(6): 575-580, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-27861137

RESUMO

BACKGROUND: A dentist always checks a patient by using panoramic radiography (PR) initially. The measurement of the minimal distance (MD) between the alveolar crest and the mandibular canal (MC) superior border is critically important before the dental implant surgery, extraction of 3rd molar teeth or any surgery in the posterior area of minimal distance (MD). However, the image of MC is not always clear to identify. OBJECTIVE: A software is needed for training dentists as well as a tool of demonstration to patients in clinics precisely and quickly. Moreover, it should be able to calculate the MD between the alveolar crest and the MC superior border before dental implant. METHODS: A computer-aided software system to semi-automatically detect the MC and mental foramen (MF) in the PR with minimal human interference is proposed. RESULTS: The result shows that the averaged relative error (RE) is 1.83% with a standard deviation of 2.31%. CONCLUSION: The results show that the proposed algorithm is able to detect the MC superior and inferior borders. This system has the potential to train young clinicians and to replace the manual work in measuring the MD between the alveolar crest and the MC superior border with a minimal human intervention.


Assuntos
Processo Alveolar/fisiologia , Mandíbula/fisiologia , Dente Molar/fisiologia , Radiografia Panorâmica/métodos , Implantes Dentários , Humanos
10.
Sensors (Basel) ; 13(4): 4855-75, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23580053

RESUMO

We propose a fully automated algorithm that is able to select a discriminative feature set from a training database via sequential forward selection (SFS), sequential backward selection (SBS), and F-score methods. We applied this scheme to microcalcifications cluster (MCC) detection in digital mammograms for early breast cancer detection. The system was able to select features fully automatically, regardless of the input training mammograms used. We tested the proposed scheme using a database of 111 clinical mammograms containing 1,050 microcalcifications (MCs). The accuracy of the system was examined via a free response receiver operating characteristic (fROC) curve of the test dataset. The system performance for MC identifications was Az = 0.9897, the sensitivity was 92%, and 0.65 false positives (FPs) were generated per image for MCC detection.


Assuntos
Automação , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Calcinose/diagnóstico por imagem , Detecção Precoce de Câncer/métodos , Mamografia/métodos , Algoritmos , Bases de Dados Factuais , Feminino , Humanos , Curva ROC , Interpretação de Imagem Radiográfica Assistida por Computador , Reprodutibilidade dos Testes , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA