Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Gland Surg ; 13(8): 1448-1458, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39282042

RESUMO

Background: Single-incision plus one-port laparoscopic duodenum-preserving pancreatic head resection (SILDPPHR+1) is yet to be reported, and therefore, its safety and efficacy have yet to be established. This study aimed to assess the short-term efficacy of SILDPPHR+1 in comparison to conventional laparoscopic duodenum-preserving pancreatic head resection (cLDPPHR). Methods: Consecutive patients who underwent SILDPPHR+1 and cLDPPHR procedures were screened. An analysis of the intraoperative and postoperative data of all patients was carried out. Results: Nineteen patients who underwent SILDPPHR+1 and 24 patients who underwent cLDPPHR at Sichuan Provincial People's Hospital from October 15, 2021, to October 30, 2023, were enrolled in this study. All baseline parameters of both groups were comparable. There was a statistically significant difference in the cosmetic score between the groups (P<0.001). No statistically significant differences were observed between the two groups regarding postoperative recovery, postoperative pancreatic fistula (POPF), bile leakage rate, delayed gastric emptying (DGE) rate, postpancreatectomy hemorrhage (PPH) rate, abdominal infection rate, or textbook outcomes. Conclusions: SILDPPHR+1 appears to be a reliable and safe procedure for certain patients, with no increase in the operating time or complications, similar to the results of cLDPPHR. Moreover, SILDPPHR+1 offers the added advantage of superior cosmetic results.

3.
Langenbecks Arch Surg ; 409(1): 168, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38819706

RESUMO

PURPOSE: To evaluate the safety and efficacy of two-step vascular exclusion and in situ hypothermic portal perfusion in patients with end-stage hepatic hydatidosis. METHODS: This study involved patients with advanced hepatic hydatid disease undergoing surgical treatment between 2022 and 2023, which included resection and reconstruction of the hepatic veins, inferior vena cava (IVC), and portal vein (PV). We described the technical details of liver resection and vascular reconstruction, as well as the use of two-step vascular exclusion and in situ hypothermic portal perfusion techniques during the vascular reconstruction process. RESULT: We included 7 patients with advanced hepatic hydatid disease who underwent surgical resection using two-step vascular exclusion and in situ hypothermic portal perfusion. The mean duration of surgery was 12.5 h (range, 7.5-15.0 h). The average hepatic ischemia time was 45 min (range, 25-77 min), while the occlusion time of the IVC was 87 min (range, 72-105 min). The total blood loss was 1000 milliliters (range, 500-1250 milliliters). Postoperatively, patients exhibited good recovery of liver and renal function. The mean ICU stay was 2 days (range, 1-3 days), and the mean postoperative hospital stay was 13 days (range, 9-16 days), with no Grade III or above complications observed during a mean follow-up period of 15 months (range, 9-24 months), CONCLUSION: two-step vascular exclusion and in situ hypothermic portal perfusion for surgical resection of end-stage hepatic hydatid disease is safe and effective. This significantly reduces the anhepatic time.


Assuntos
Equinococose Hepática , Hepatectomia , Veia Porta , Veia Cava Inferior , Humanos , Equinococose Hepática/cirurgia , Equinococose Hepática/diagnóstico por imagem , Masculino , Feminino , Hepatectomia/métodos , Adulto , Pessoa de Meia-Idade , Veia Porta/cirurgia , Veia Cava Inferior/cirurgia , Hipotermia Induzida , Resultado do Tratamento , Perfusão/métodos , Estudos Retrospectivos , Veias Hepáticas/cirurgia , Idoso
4.
bioRxiv ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38645232

RESUMO

Adenocarcinomas from multiple tissues can evolve into lethal, treatment-resistant small cell neuroendocrine (SCN) cancers comprising multiple subtypes with poorly defined metabolic characteristics. The role of metabolism in directly driving subtype determination remains unclear. Through bioinformatics analyses of thousands of patient tumors, we identified enhanced PGC-1α-a potent regulator of oxidative phosphorylation (OXPHOS)-in various SCN cancers (SCNCs), closely linked with neuroendocrine differentiation. In a patient-derived prostate tissue SCNC transformation system, the ASCL1-expressing neuroendocrine subtype showed elevated PGC-1α expression and increased OXPHOS activity. Inhibition of PGC-1α and OXPHOS reduced the proliferation of SCN lung and prostate cancer cell lines and blocked SCN prostate tumor formation. Conversely, enhancing PGC- 1α and OXPHOS, validated by small-animal Positron Emission Tomography mitochondrial imaging, tripled the SCN prostate tumor formation rate and promoted commitment to the ASCL1 lineage. These results establish PGC-1α as a driver of SCNC progression and subtype determination, highlighting novel metabolic vulnerabilities in SCNCs across different tissues. STATEMENT OF SIGNIFICANCE: Our study provides functional evidence that metabolic reprogramming can directly impact cancer phenotypes and establishes PGC-1α-induced mitochondrial metabolism as a driver of SCNC progression and lineage determination. These mechanistic insights reveal common metabolic vulnerabilities across SCNCs originating from multiple tissues, opening new avenues for pan-SCN cancer therapeutic strategies.

6.
Proc Natl Acad Sci U S A ; 121(14): e2320442121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536748

RESUMO

The ability to selectively bind to antigenic peptides and secrete effector molecules can define rare and low-affinity populations of cells with therapeutic potential in emerging T cell receptor (TCR) immunotherapies. We leverage cavity-containing hydrogel microparticles, called nanovials, each coated with peptide-major histocompatibility complex (pMHC) monomers to isolate antigen-reactive T cells. T cells are captured and activated by pMHCs inducing the secretion of effector molecules including IFN-γ and granzyme B that are accumulated on nanovials, allowing sorting based on both binding and function. The TCRs of sorted cells on nanovials are sequenced, recovering paired αß-chains using microfluidic emulsion-based single-cell sequencing. By labeling nanovials having different pMHCs with unique oligonucleotide-barcodes and secretions with oligo-barcoded detection antibodies, we could accurately link TCR sequences to specific targets and rank each TCR based on the corresponding cell's secretion level. Using the technique, we identified an expanded repertoire of functional TCRs targeting viral antigens with high specificity and found rare TCRs with activity against cancer-specific splicing-enhanced epitopes.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Peptídeos/química , Antígenos de Histocompatibilidade/química , Antígenos
7.
Proc Natl Acad Sci U S A ; 120(47): e2312374120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963244

RESUMO

CAR (chimeric antigen receptor) T cell therapy has shown clinical success in treating hematological malignancies, but its treatment of solid tumors has been limited. One major challenge is on-target, off-tumor toxicity, where CAR T cells also damage normal tissues that express the targeted antigen. To reduce this detrimental side-effect, Boolean-logic gates like AND-NOT gates have utilized an inhibitory CAR (iCAR) to specifically curb CAR T cell activity at selected nonmalignant tissue sites. However, the strategy seems inefficient, requiring high levels of iCAR and its target antigen for inhibition. Using a TROP2-targeting iCAR with a single PD1 inhibitory domain to inhibit a CEACAM5-targeting CAR (CEACAR), we observed that the inefficiency was due to a kinetic delay in iCAR inhibition of cytotoxicity. To improve iCAR efficiency, we modified three features of the iCAR-the avidity, the affinity, and the intracellular signaling domains. Increasing the avidity but not the affinity of the iCAR led to significant reductions in the delay. iCARs containing twelve different inhibitory signaling domains were screened for improved inhibition, and three domains (BTLA, LAIR-1, and SIGLEC-9) each suppressed CAR T function but did not enhance inhibitory kinetics. When inhibitory domains of LAIR-1 or SIGLEC-9 were combined with PD-1 into a single dual-inhibitory domain iCAR (DiCARs) and tested with the CEACAR, inhibition efficiency improved as evidenced by a significant reduction in the inhibitory delay. These data indicate that a delicate balance between CAR and iCAR signaling strength and kinetics must be achieved to regulate AND-NOT gate CAR T cell selectivity.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Complexo Ferro-Dextran , Imunoterapia Adotiva , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
8.
Cancer Cell ; 41(12): 2066-2082.e9, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37995683

RESUMO

Trans-differentiation from an adenocarcinoma to a small cell neuroendocrine state is associated with therapy resistance in multiple cancer types. To gain insight into the underlying molecular events of the trans-differentiation, we perform a multi-omics time course analysis of a pan-small cell neuroendocrine cancer model (termed PARCB), a forward genetic transformation using human prostate basal cells and identify a shared developmental, arc-like, and entropy-high trajectory among all transformation model replicates. Further mapping with single cell resolution reveals two distinct lineages defined by mutually exclusive expression of ASCL1 or ASCL2. Temporal regulation by groups of transcription factors across developmental stages reveals that cellular reprogramming precedes the induction of neuronal programs. TFAP4 and ASCL1/2 feedback are identified as potential regulators of ASCL1 and ASCL2 expression. Our study provides temporal transcriptional patterns and uncovers pan-tissue parallels between prostate and lung cancers, as well as connections to normal neuroendocrine cell states.


Assuntos
Carcinoma de Células Pequenas , Neoplasias Pulmonares , Neoplasias da Próstata , Carcinoma de Pequenas Células do Pulmão , Masculino , Humanos , Neoplasias Pulmonares/genética , Carcinoma de Células Pequenas/genética , Fatores de Transcrição/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transdiferenciação Celular/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Carcinoma de Pequenas Células do Pulmão/genética
9.
Proc Natl Acad Sci U S A ; 120(28): e2220190120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399401

RESUMO

The MYC proto-oncogene contributes to the pathogenesis of more than half of human cancers. Malignant transformation by MYC transcriptionally up-regulates the core pre-mRNA splicing machinery and causes misregulation of alternative splicing. However, our understanding of how splicing changes are directed by MYC is limited. We performed a signaling pathway-guided splicing analysis to identify MYC-dependent splicing events. These included an HRAS cassette exon repressed by MYC across multiple tumor types. To molecularly dissect the regulation of this HRAS exon, we used antisense oligonucleotide tiling to identify splicing enhancers and silencers in its flanking introns. RNA-binding motif prediction indicated multiple binding sites for hnRNP H and hnRNP F within these cis-regulatory elements. Using siRNA knockdown and cDNA expression, we found that both hnRNP H and F activate the HRAS cassette exon. Mutagenesis and targeted RNA immunoprecipitation implicate two downstream G-rich elements in this splicing activation. Analyses of ENCODE RNA-seq datasets confirmed hnRNP H regulation of HRAS splicing. Analyses of RNA-seq datasets across multiple cancers showed a negative correlation of HNRNPH gene expression with MYC hallmark enrichment, consistent with the effect of hnRNP H on HRAS splicing. Interestingly, HNRNPF expression showed a positive correlation with MYC hallmarks and thus was not consistent with the observed effects of hnRNP F. Loss of hnRNP H/F altered cell cycle progression and induced apoptosis in the PC3 prostate cancer cell line. Collectively, our results reveal mechanisms for MYC-dependent regulation of splicing and point to possible therapeutic targets in prostate cancers.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H , Neoplasias da Próstata , Masculino , Humanos , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Éxons/genética , Processamento Alternativo/genética , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
10.
Proc Natl Acad Sci U S A ; 120(21): e2221116120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37192158

RESUMO

Alternative splicing (AS) is prevalent in cancer, generating an extensive but largely unexplored repertoire of novel immunotherapy targets. We describe Isoform peptides from RNA splicing for Immunotherapy target Screening (IRIS), a computational platform capable of discovering AS-derived tumor antigens (TAs) for T cell receptor (TCR) and chimeric antigen receptor T cell (CAR-T) therapies. IRIS leverages large-scale tumor and normal transcriptome data and incorporates multiple screening approaches to discover AS-derived TAs with tumor-associated or tumor-specific expression. In a proof-of-concept analysis integrating transcriptomics and immunopeptidomics data, we showed that hundreds of IRIS-predicted TCR targets are presented by human leukocyte antigen (HLA) molecules. We applied IRIS to RNA-seq data of neuroendocrine prostate cancer (NEPC). From 2,939 NEPC-associated AS events, IRIS predicted 1,651 epitopes from 808 events as potential TCR targets for two common HLA types (A*02:01 and A*03:01). A more stringent screening test prioritized 48 epitopes from 20 events with "neoantigen-like" NEPC-specific expression. Predicted epitopes are often encoded by microexons of ≤30 nucleotides. To validate the immunogenicity and T cell recognition of IRIS-predicted TCR epitopes, we performed in vitro T cell priming in combination with single-cell TCR sequencing. Seven TCRs transduced into human peripheral blood mononuclear cells (PBMCs) showed high activity against individual IRIS-predicted epitopes, providing strong evidence of isolated TCRs reactive to AS-derived peptides. One selected TCR showed efficient cytotoxicity against target cells expressing the target peptide. Our study illustrates the contribution of AS to the TA repertoire of cancer cells and demonstrates the utility of IRIS for discovering AS-derived TAs and expanding cancer immunotherapies.


Assuntos
Neoplasias , Precursores de RNA , Masculino , Humanos , Precursores de RNA/metabolismo , Processamento Alternativo , Leucócitos Mononucleares/metabolismo , Receptores de Antígenos de Linfócitos T , Epitopos de Linfócito T , Imunoterapia , Antígenos de Neoplasias , Peptídeos/metabolismo , Neoplasias/genética , Neoplasias/terapia
11.
World J Clin Cases ; 10(31): 11579-11584, 2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36387803

RESUMO

BACKGROUND: Inadequate volume of future liver remnant (FLR) is a major challenge for hepatobiliary surgeons treating large or multiple liver tumors. As an alternative to associating liver partition and portal vein ligation (ALPPS) for staged hepatectomy and liver venous deprivation (LVD) using stage 1 interventional radiology for vascular embolization combined with stage 2 open liver resection have been used. CASE SUMMARY: A novel modified LVD technique was performed in a patient with pancreatic neuroendocrine tumor with liver metastases by using stage 1 laparoscopic ligation of the right hepatic vein, right posterior portal vein, and short hepatic veins combined with local excision of three liver metastases in the left hemiliver. The operation was followed three days later by interventional radiology to embolize an anomalous right anterior portal vein to complete LVD. A stage 2 laparoscopic right hemihepatectomy and pancreaticosplenectomy were then carried out. CONCLUSION: The minimally invasive technique promoted a rapid increase, comparable to ALPPS, in volume of the FLR after the stage 1 operation to allow the laparoscopic stage 2 resection to be performed.

12.
Proc Natl Acad Sci U S A ; 119(31): e2203410119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878026

RESUMO

Tissue-specific antigens can serve as targets for adoptive T cell transfer-based cancer immunotherapy. Recognition of tumor by T cells is mediated by interaction between peptide-major histocompatibility complexes (pMHCs) and T cell receptors (TCRs). Revealing the identity of peptides bound to MHC is critical in discovering cognate TCRs and predicting potential toxicity. We performed multimodal immunopeptidomic analyses for human prostatic acid phosphatase (PAP), a well-recognized tissue antigen. Three physical methods, including mild acid elution, coimmunoprecipitation, and secreted MHC precipitation, were used to capture a thorough signature of PAP on HLA-A*02:01. Eleven PAP peptides that are potentially A*02:01-restricted were identified, including five predicted strong binders by NetMHCpan 4.0. Peripheral blood mononuclear cells (PBMCs) from more than 20 healthy donors were screened with the PAP peptides. Seven cognate TCRs were isolated which can recognize three distinct epitopes when expressed in PBMCs. One TCR shows reactivity toward cell lines expressing both full-length PAP and HLA-A*02:01. Our results show that a combined multimodal immunopeptidomic approach is productive in revealing target peptides and defining the cloned TCR sequences reactive with prostatic acid phosphatase epitopes.


Assuntos
Fosfatase Ácida , Antígenos de Neoplasias , Receptores de Antígenos de Linfócitos T , Fosfatase Ácida/metabolismo , Antígenos de Neoplasias/metabolismo , Epitopos , Antígenos HLA-A/metabolismo , Antígeno HLA-A2 , Humanos , Leucócitos Mononucleares , Neoplasias/imunologia , Peptídeos , Receptores de Antígenos de Linfócitos T/metabolismo
13.
Cell Rep Med ; 2(11): 100449, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34841295

RESUMO

Cell-based immunotherapy has become the new-generation cancer medicine, and "off-the-shelf" cell products that can be manufactured at large scale and distributed readily to treat patients are necessary. Invariant natural killer T (iNKT) cells are ideal cell carriers for developing allogeneic cell therapy because they are powerful immune cells targeting cancers without graft-versus-host disease (GvHD) risk. However, healthy donor blood contains extremely low numbers of endogenous iNKT cells. Here, by combining hematopoietic stem cell (HSC) gene engineering and in vitro differentiation, we generate human allogeneic HSC-engineered iNKT (AlloHSC-iNKT) cells at high yield and purity; these cells closely resemble endogenous iNKT cells, effectively target tumor cells using multiple mechanisms, and exhibit high safety and low immunogenicity. These cells can be further engineered with chimeric antigen receptor (CAR) to enhance tumor targeting or/and gene edited to ablate surface human leukocyte antigen (HLA) molecules and further reduce immunogenicity. Collectively, these preclinical studies demonstrate the feasibility and cancer therapy potential of AlloHSC-iNKT cell products and lay a foundation for their translational and clinical development.


Assuntos
Células Alógenas/imunologia , Engenharia Celular , Células-Tronco Hematopoéticas/imunologia , Imunoterapia , Células T Matadoras Naturais/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Células Alógenas/metabolismo , Animais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Antígenos HLA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Células T Matadoras Naturais/metabolismo , Fenótipo , Receptores de Antígenos Quiméricos/metabolismo , Transcriptoma/genética
14.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431692

RESUMO

T cell receptors (TCRs) are generated by somatic recombination of V/D/J segments to produce up to 1015 unique sequences. Highly sensitive and specific techniques are required to isolate and identify the rare TCR sequences that respond to antigens of interest. Here, we describe the use of mRNA sequencing via cross-linker regulated intracellular phenotype (CLInt-Seq) for efficient recovery of antigen-specific TCRs in cells stained for combinations of intracellular proteins such as cytokines or transcription factors. This method enables high-throughput identification and isolation of low-frequency TCRs specific for any antigen. As a proof of principle, intracellular staining for TNFα and IFNγ identified cytomegalovirus (CMV)- and Epstein-Barr virus (EBV)-reactive TCRs with efficiencies similar to state-of-the-art peptide-MHC multimer methodology. In a separate experiment, regulatory T cells were profiled based on intracellular FOXP3 staining, demonstrating the ability to examine phenotypes based on transcription factors. We further optimized the intracellular staining conditions to use a chemically cleavable primary amine cross-linker compatible with current single-cell sequencing technology. CLInt-Seq for TNFα and IFNγ performed similarly to isolation with multimer staining for EBV-reactive TCRs. We anticipate CLInt-Seq will enable droplet-based single-cell mRNA analysis from any tissue where minor populations need to be isolated by intracellular markers.


Assuntos
Fatores de Transcrição Forkhead/genética , Interferon gama/genética , Fator de Necrose Tumoral alfa/genética , Recombinação V(D)J/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Clonagem Molecular , Citomegalovirus/imunologia , Citomegalovirus/patogenicidade , Epitopos/imunologia , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/patogenicidade , Humanos , RNA Mensageiro/genética , RNA-Seq , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Análise de Célula Única , Linfócitos T Reguladores/imunologia , Recombinação V(D)J/imunologia
15.
Hepatology ; 73(6): 2361-2379, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33205519

RESUMO

BACKGROUND AND AIMS: The mechanism by which tumor cells resist metabolic stress remains unclear, but many oncogenes are known to regulate this process. Accordingly, metabolic stress is closely associated with tumor metastasis. In this study, gene chip technology showed that Ras homolog family member F, filopodia associated (RHOF), a member of the Rho guanosine triphosphatase family, is an oncogene that is significantly related to hepatocellular carcinoma (HCC) metastasis; however, it has rarely been reported in tumors. Our aim was to determine the clinicopathological significance and role of RHOF in HCC progression and investigate the associated mechanisms. APPROACH AND RESULTS: The results showed that compared to expression in adjacent noncancerous tissues, RHOF was frequently up-regulated in HCC tumor samples and elevated under conditions of glucose deprivation. RHOF expression was associated with tumor-node-metastasis stage, T grade, metastasis status, recurrence, and survival in HCC. RHOF also affected cell morphology and promoted migration, invasion, and epithelial-mesenchymal transition (EMT) of HCC cell lines. Analysis of the underlying mechanism showed that RHOF promoted the Warburg effect by up-regulating the expression and function of several glycolytic enzymes in HCC cells. This metabolic shift enhanced HCC cell migration and invasion. Specifically, RHOF exerted a tumor-promoting effect by directly interacting with AMP-activated protein kinase (AMPK) and increasing the phosphorylation of AMPK. This subsequently affected RAB3D mRNA stability and led to elevated RAB3D expression, thereby amplifying the Warburg effect and malignant biological behaviors of HCC cells. CONCLUSIONS: RHOF helps tumor cells resist metabolic stress through modulating the Warburg effect and plays a critical role in promoting HCC cell migration, invasion, and EMT, highlighting its important role in remodeling the metastatic microenvironment and regulating tumor metastasis. RHOF shows potential as a therapeutic target and prognostic biomarker for HCC.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Hepáticas , Estresse Fisiológico/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Descoberta de Drogas , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Metástase Neoplásica , Estadiamento de Neoplasias , Fosforilação , Prognóstico , Regulação para Cima , Proteínas rab3 de Ligação ao GTP/metabolismo
16.
Proc Natl Acad Sci U S A ; 117(10): 5269-5279, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32086391

RESUMO

We sought to define the landscape of alternative pre-mRNA splicing in prostate cancers and the relationship of exon choice to known cancer driver alterations. To do so, we compiled a metadataset composed of 876 RNA-sequencing (RNA-Seq) samples from five publicly available sources representing a range of prostate phenotypes from normal tissue to drug-resistant metastases. We subjected these samples to exon-level analysis with rMATS-turbo, purpose-built software designed for large-scale analyses of splicing, and identified 13,149 high-confidence cassette exon events with variable incorporation across samples. We then developed a computational framework, pathway enrichment-guided activity study of alternative splicing (PEGASAS), to correlate transcriptional signatures of 50 different cancer driver pathways with these alternative splicing events. We discovered that Myc signaling was correlated with incorporation of a set of 1,039 cassette exons enriched in genes encoding RNA binding proteins. Using a human prostate epithelial transformation assay, we confirmed the Myc regulation of 147 of these exons, many of which introduced frameshifts or encoded premature stop codons. Our results connect changes in alternative pre-mRNA splicing to oncogenic alterations common in prostate and many other cancers. We also establish a role for Myc in regulating RNA splicing by controlling the incorporation of nonsense-mediated decay-determinant exons in genes encoding RNA binding proteins.


Assuntos
Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Códon de Terminação/genética , Simulação por Computador , Conjuntos de Dados como Assunto , Resistencia a Medicamentos Antineoplásicos/genética , Éxons , Feminino , Mutação da Fase de Leitura , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA-Seq , Transdução de Sinais , Software
17.
Pathol Oncol Res ; 26(1): 425-431, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30406400

RESUMO

Our study was aimed to identify the fundamental role of lncRNA HOST2 in gemcitabine resistance regulation in human pancreatic cancer cells. The levels of HOST2 in pancreatic cancer cell lines were measured by quantitative real-time PCR (qRT-PCR). Due to high expression and strong gemcitabine resistance, Hs766T and AsPC-1 cell lines were selected to be knockdown the expression of HOST2 by transfection sh-HOST2. After manipulation of HOST2, the cell proliferation induced by gemcitabine was examined by CCK-8 assay. Next, colony formation ability of Hs766T and AsPC-1 cell lines was determined by clone-forming assay. At last, the relationship between HOST2 and cell apoptosis in Hs766T and AsPC-1 cell lines was evaluated by flow cytometry. QRT-PCR revealed that HOST2 was overexpressed in six pancreas neoplasm cell lines compared with normal cell lines HPDE6-C7. HOST2 expression levels in group resistant to gemcitabine were higher than the group sensitive to gemcitabine. Additionally, CCK-8 assay verified that cell proliferation was inhibited by sh-HOST2 with or without gemcitabine treatment. Furthermore, clone-forming assay revealed that colony formation ability was weakened by down-regulated HOST2 with or without gemcitabine treatment. Flow cytometry revealed that cell apoptosis induced by gemcitabine was promoted by sh-HOST2. In conclusion, down-regulated HOST2 inhibited proliferation and promoted apoptosis of pancreas cancer cells with or without gemcitabine treatment. Thus, HOST2 is a potential therapeutic target for gemcitabine chemoresistance in pancreatic neoplasms.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , RNA Longo não Codificante/genética , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Humanos , Gencitabina
18.
Sci Transl Med ; 11(521)2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801883

RESUMO

Hormonal therapy targeting androgen receptor (AR) is initially effective to treat prostate cancer (PCa), but it eventually fails. It has been hypothesized that cellular heterogeneity of PCa, consisting of AR+ luminal tumor cells and AR- neuroendocrine (NE) tumor cells, may contribute to therapy failure. Here, we describe the successful purification of NE cells from primary fresh human prostate adenocarcinoma based on the cell surface receptor C-X-C motif chemokine receptor 2 (CXCR2). Functional studies revealed CXCR2 to be a driver of the NE phenotype, including loss of AR expression, lineage plasticity, and resistance to hormonal therapy. CXCR2-driven NE cells were critical for the tumor microenvironment by providing a survival niche for the AR+ luminal cells. We demonstrate that the combination of CXCR2 inhibition and AR targeting is an effective treatment strategy in mouse xenograft models. Such a strategy has the potential to overcome therapy resistance caused by tumor cell heterogeneity.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Terapia de Alvo Molecular , Neoplasias da Próstata/tratamento farmacológico , Receptores de Interleucina-8B/antagonistas & inibidores , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Progressão da Doença , Humanos , Masculino , Camundongos Nus , Gradação de Tumores , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Tumores Neuroendócrinos/irrigação sanguínea , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/patologia , Sistemas Neurossecretores/patologia , Fenótipo , Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/patologia , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais , Microambiente Tumoral
19.
Cell Stem Cell ; 25(4): 542-557.e9, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31495780

RESUMO

Invariant natural killer T (iNKT) cells are potent immune cells for targeting cancer; however, their clinical application has been hindered by their low numbers in cancer patients. Here, we developed a proof-of-concept for hematopoietic stem cell-engineered iNKT (HSC-iNKT) cell therapy with the potential to provide therapeutic levels of iNKT cells for a patient's lifetime. Using a human HSC engrafted mouse model and a human iNKT TCR gene engineering approach, we demonstrated the efficient and long-term generation of HSC-iNKT cells in vivo. These HSC-iNKT cells closely resembled endogenous human iNKT cells, could deploy multiple mechanisms to attack tumor cells, and effectively suppressed tumor growth in vivo in multiple human tumor xenograft mouse models. Preclinical safety studies showed no toxicity or tumorigenicity of the HSC-iNKT cell therapy. Collectively, these results demonstrated the feasibility, safety, and cancer therapy potential of the proposed HSC-iNKT cell therapy and laid a foundation for future clinical development.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Imunoterapia Adotiva/métodos , Células T Matadoras Naturais/fisiologia , Neoplasias/terapia , Animais , Células Cultivadas , Engenharia Genética , Humanos , Camundongos , Camundongos SCID , Células T Matadoras Naturais/transplante , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/genética , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cell Rep ; 28(10): 2728-2738.e7, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484081

RESUMO

Neoantigen-specific T cells are increasingly viewed as important immunotherapy effectors, but physically isolating these rare cell populations is challenging. Here, we describe a sensitive method for the enumeration and isolation of neoantigen-specific CD8+ T cells from small samples of patient tumor or blood. The method relies on magnetic nanoparticles that present neoantigen-loaded major histocompatibility complex (MHC) tetramers at high avidity by barcoded DNA linkers. The magnetic particles provide a convenient handle to isolate the desired cell populations, and the barcoded DNA enables multiplexed analysis. The method exhibits superior recovery of antigen-specific T cell populations relative to literature approaches. We applied the method to profile neoantigen-specific T cell populations in the tumor and blood of patients with metastatic melanoma over the course of anti-PD1 checkpoint inhibitor therapy. We show that the method has value for monitoring clinical responses to cancer immunotherapy and might help guide the development of personalized mutational neoantigen-specific T cell therapies and cancer vaccines.


Assuntos
Antígenos de Neoplasias/sangue , Melanoma/sangue , Melanoma/imunologia , Linfócitos T/imunologia , Biópsia , Células HEK293 , Humanos , Imunoterapia , Células Jurkat , Cinética , Linfócitos do Interstício Tumoral/imunologia , Nanopartículas de Magnetita/química , Complexo Principal de Histocompatibilidade , Melanoma/patologia , Melanoma/secundário , Ácidos Nucleicos/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA