Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 10, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169465

RESUMO

Tactile function is essential for human life as it enables us to recognize texture and respond to external stimuli, including potential threats with sharp objects that may result in punctures or lacerations. Severe skin damage caused by severe burns, skin cancer, chemical accidents, and industrial accidents damage the structure of the skin tissue as well as the nerve system, resulting in permanent tactile sensory dysfunction, which significantly impacts an individual's daily life. Here, we introduce a fully-implantable wireless powered tactile sensory system embedded artificial skin (WTSA), with stable operation, to restore permanently damaged tactile function and promote wound healing for regenerating severely damaged skin. The fabricated WTSA facilitates (i) replacement of severely damaged tactile sensory with broad biocompatibility, (ii) promoting of skin wound healing and regeneration through collagen and fibrin-based artificial skin (CFAS), and (iii) minimization of foreign body reaction via hydrogel coating on neural interface electrodes. Furthermore, the WTSA shows a stable operation as a sensory system as evidenced by the quantitative analysis of leg movement angle and electromyogram (EMG) signals in response to varying intensities of applied pressures.


Assuntos
Pele Artificial , Humanos , Biônica , Tato/fisiologia , Pele , Cicatrização , Órgãos dos Sentidos
2.
Trials ; 24(1): 789, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053197

RESUMO

BACKGROUND: Alopecia is one of the most common adverse effects of chemotherapy. It reduces the patient's self-esteem and quality of life and the effect of therapy. Scalp cooling is the only verified current method for prevention but success is not guaranteed, particularly after receiving anthracycline-based combinations. Low-level light therapy has been clinically proven to inhibit the progress of androgenic alopecia. A previous study using human subjects shows limited benefits for low-level light therapy for patients who suffer chemotherapy-induced alopecia but an increase in the number of probes and the optimization of light sources may improve the efficacy. This study determines the efficacy of low-level light therapy for the prevention of chemotherapy-induced hair loss for patients with breast cancer using a randomized controlled trial. METHODS: One hundred six eligible breast cancer patients were randomly distributed into a low-level light therapy group and a control group, after receiving chemotherapy. Subjects in the low-level light therapy group received 12 courses of intervention within 4 weeks. Subjects in the control group received no intervention but were closely monitored. The primary outcome is measured as the difference in the hair count in a target area between the baseline and at the end of week 4, as measured using a phototrichogram (Sentra scalp analyzer). The secondary outcomes include the change in hair count at the end of week 1, week 2, and week 3 and hair width at the end of week 1, week 2, week 3, and week 4, as measured using a phototrichogram, and the change in distress, the quality of life, and self-esteem due to chemotherapy-induced alopecia, at the end of week 4, as measured using a questionnaire. DISCUSSION: This study improves cancer patients' quality of life and provides clinical evidence. TRIAL REGISTRATION: Registered at ClinicalTrials.gov- NCT05397457 on 1 June 2022.


Assuntos
Neoplasias da Mama , Terapia com Luz de Baixa Intensidade , Humanos , Feminino , Qualidade de Vida , Dispositivos de Proteção da Cabeça , Alopecia/induzido quimicamente , Alopecia/prevenção & controle , Alopecia/tratamento farmacológico , Couro Cabeludo , Antibióticos Antineoplásicos/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Nano Lett ; 23(8): 3435-3443, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37014054

RESUMO

Integrating wearable gas sensors with energy harvesting and storage devices can create self-powered systems for continuous monitoring of gaseous molecules. However, the development is still limited by complex fabrication processes, poor stretchability, and sensitivity. Herein, we report the low-cost and scalable laser scribing of crumpled graphene/MXenes nanocomposite foams to combine stretchable self-charging power units with gas sensors for a fully integrated standalone gas sensing system. The crumpled nanocomposite designed in island-bridge device architecture allows the integrated self-charging unit to efficiently harvest kinetic energy from body movements into stable power with adjustable voltage/current outputs. Meanwhile, given the stretchable gas sensor with a large response of ∼1% ppm-1 and an ultralow detection limit of ∼5 ppb to NO2/NH3, the integrated system provides real-time monitoring of the exhaled human breath and the local air quality. The innovations in materials and structural designs pave the way for the future development of wearable electronics.

4.
Chem Eng J ; 4562023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36712894

RESUMO

Gas-sensitive semiconducting nanomaterials (e.g., metal oxides, graphene oxides, and transition metal dichalcogenides) and their heterojunctions hold great promise in chemiresistive gas sensors. However, they often require a separate synthesis method (e.g., hydrothermal, so-gel, and co-precipitation) and their integration on interdigitated electrodes (IDE) via casting is also associated with weak interfacial properties. This work demonstrates in situ laser-assisted synthesis and patterning of various sensing nanomaterials and their heterojunctions on laser-induced graphene (LIG) foam to form LIG composites as a flexible and stretchable gas sensing platform. The porous LIG line or pattern with nanomaterial precursors dispensed on top is scribed by laser to allow for in situ growth of corresponding nanomaterials. The versatility of the proposed method is highlighted through the creation of different types of gas-sensitive materials, including transition metal dichalcogenide (e.g., MoS2), metal oxide (e.g., CuO), noble metal-doped metal oxide (e.g., Ag/ZnO) and composite metal oxides (e.g., In2O3/Cr2O3). By eliminating the IDE and separate heaters, the LIG gas sensing platform with self-heating also decreases the device complexity. The limit of detection (LOD) of the LIG gas sensor with in situ synthesized MoS2, CuO, and Ag/ZnO to NO2, H2S, and trimethylamine (TMA) is 2.7, 9.8, and 5.6 ppb, respectively. Taken together with the high sensitivity, good selectivity, rapid response/recovery, and tunable operating temperature, the integrated LIG gas sensor array can identify multiple gas species in the environment or exhaled breath.

5.
Microsyst Nanoeng ; 8: 78, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35818382

RESUMO

The accurate, continuous analysis of healthcare-relevant gases such as nitrogen oxides (NOx) in a humid environment remains elusive for low-cost, stretchable gas sensing devices. This study presents the design and demonstration of a moisture-resistant, stretchable NOx gas sensor based on laser-induced graphene (LIG). Sandwiched between a soft elastomeric substrate and a moisture-resistant semipermeable encapsulant, the LIG sensing and electrode layer is first optimized by tuning laser processing parameters such as power, image density, and defocus distance. The gas sensor, using a needlelike LIG prepared with optimal laser processing parameters, exhibits a large response of 4.18‰ ppm-1 to NO and 6.66‰ ppm-1 to NO2, an ultralow detection limit of 8.3 ppb to NO and 4.0 ppb to NO2, fast response/recovery, and excellent selectivity. The design of a stretchable serpentine structure in the LIG electrode and strain isolation from the stiff island allows the gas sensor to be stretched by 30%. Combined with a moisture-resistant property against a relative humidity of 90%, the reported gas sensor has further been demonstrated to monitor the personal local environment during different times of the day and analyze human breath samples to classify patients with respiratory diseases from healthy volunteers. Moisture-resistant, stretchable NOx gas sensors can expand the capability of wearable devices to detect biomarkers from humans and exposed environments for early disease diagnostics.

6.
ACS Appl Mater Interfaces ; 14(24): 28163-28173, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35686829

RESUMO

Fabrication and processing approaches that facilitate the ease of patterning and the integration of nanomaterials into sensor platforms are of significant utility and interest. In this work, we report the use of laser-induced thermal voxels (LITV) to fabricate microscale, planar gas sensors directly from solutions of metal salts. LITV offers a facile platform to directly integrate nanocrystalline metal oxide and mixed metal oxide materials onto heating platforms, with access to a wide variety of compositions and morphologies including many transition metals and noble metals. The unique patterning and synthesis flexibility of LITV enable the fabrication of chemically and spatially tailorable microscale sensing devices. We investigate the sensing performance of a representative set of n-type and p-type LITV-deposited metal oxides and their mixtures (CuO, NiO, CuO/ZnO, and Fe2O3/Pt) in response to reducing and oxidizing gases (H2S, NO2, NH3, ethanol, and acetone). These materials show a broad range of sensitivities and notably a strong response of NiO to ethanol and acetone (407 and 301% R/R0 at 250 °C, respectively), along with a 5- to 20-fold sensitivity enhancement for CuO/ZnO to all gases measured over pure CuO, highlighting the opportunities of LITV for the creation of mixed-material microscale sensors.

7.
J Virol ; 96(14): e0081322, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35762756

RESUMO

FNIP repeat domain-containing protein (FNIP protein) is a little-studied atypical leucine-rich repeat domain-containing protein found in social amoebae and mimiviruses. Here, a recently reported mimivirus of lineage C, Megavirus baoshan, was analyzed for FNIP protein genes. A total of 82 FNIP protein genes were identified, each containing up to 26 copies of the FNIP repeat, and mostly having an F-box domain at the N terminus. Both nucleotide and amino acid sequences of FNIP repeat were highly conserved. Most of the FNIP protein genes clustered together tandemly in groups of two to 14 genes. Nearly all FNIP protein genes shared similar expression patterns and were expressed 4 to 9 h postinfection. A typical viral FNIP protein, Mb0983, was selected for functional analysis. Protein interactome analysis identified two small GTPases, Rap1B and Rab7A, that interacted with Mb0983 in cytoplasm. The overexpression of Mb0983 in Acanthamoeba castellanii accelerated the degradation of Rap1B and Rab7A during viral infection. Mb0983 also interacted with host SKP1 and cullin-1, which were conserved components of the SKP1-cullin-1-F-box protein (SCF)-type ubiquitin E3 ligase complex. Deletion of the F-box domain of Mb0983 not only abolished its interaction with SKP1 and cullin-1 but also returned the speed of Rap1B and Rab7A degradation to normal in infected A. castellanii. These results suggested that Mb0983 is a part of the SCF-type ubiquitin E3 ligase complex and plays a role in the degradation of Rap1B and Rab7A. They also implied that other viral F-box-containing FNIP proteins might have similar effects on various host proteins. IMPORTANCE Megavirus baoshan encodes 82 FNIP proteins, more than any other reported mimiviruses. Their genetic and transcriptional features suggest that they are important for virus infection and adaption. Since most mimiviral FNIP proteins have the F-box domain, they were predicted to be involved in protein ubiquitylation. FNIP protein Mb0983 interacted with host SKP1 and cullin-1 through the F-box domain, supporting the idea that it is a part of the SCF-type ubiquitin E3 ligase complex. The substrates of Mb0983 for degradation were identified as the host small GTPases Rap1B and Rab7A. Combining the facts of the presence of a large number of FNIP genes in megavirus genomes, the extremely high expression level of the viral ubiquitin gene, and the reported observation that 35% of megavirus-infected amoeba cells died without productive infection, it is likely that megavirus actively explores the host ubiquitin-proteasome pathway in infection and that viral FNIP proteins play roles in the process.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Proteínas Virais , Acanthamoeba castellanii/virologia , Proteínas F-Box/metabolismo , Interações entre Hospedeiro e Microrganismos , Mimiviridae/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
ACS Appl Mater Interfaces ; 14(15): 17818-17825, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35394746

RESUMO

The surge in air pollution and respiratory diseases across the globe has spurred significant interest in the development of flexible gas sensors prepared by low-cost and scalable fabrication methods. However, the limited breathability in the commonly used substrate materials reduces the exchange of air and moisture to result in irritation and a low level of comfort. This study presents the design and demonstration of a breathable, flexible, and highly sensitive NO2 gas sensor based on the silver (Ag)-decorated laser-induced graphene (LIG) foam. The scalable laser direct writing transforms the self-assembled block copolymer and resin mixture with different mass ratios into highly porous LIG with varying pore sizes. Decoration of Ag nanoparticles on the porous LIG further increases the specific surface area and conductivity to result in a highly sensitive and selective composite to detect nitrogen oxides. The as-fabricated Ag/LIG gas sensor on a flexible polyethylene substrate exhibits a large response of -12‰, a fast response/recovery of 40/291 s, and a low detection limit of a few parts per billion at room temperature. Integrating the Ag/LIG composite on diverse fabric substrates further results in breathable gas sensors and intelligent clothing, which allows permeation of air and moisture to provide long-term practical use with an improved level of comfort.

9.
Microsyst Nanoeng ; 7: 11, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33532080

RESUMO

Micro/nanodevices have been widely applied for the real-time monitoring of intracellular activities and the delivery of exogenous substances in the past few years. This review focuses on miniaturized micro/nanodevices for assessment and treatment in stomatology and ophthalmology. We first summarize the recent progress in this field by examining the available materials and fabrication techniques, device design principles, mechanisms, and biosafety aspects of micro/nanodevices. Following a discussion of biochemical sensing technology from the cellular level to the tissue level for disease assessment, we then summarize the use of microneedles and other micro/nanodevices in the treatment of oral and ocular diseases and conditions, including oral cancer, eye wrinkles, keratitis, and infections. Along with the identified key challenges, this review concludes with future directions as a small fraction of vast opportunities, calling for joint efforts between clinicians and engineers with diverse backgrounds to help facilitate the rapid development of this burgeoning field in stomatology and ophthalmology.

10.
Trends Analyt Chem ; 1332020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33244191

RESUMO

The recent advent of stretchable gas sensors demonstrates their capabilities to detect not only gaseous biomarkers from the human body but also toxic gas species from the exposed environment. To ensure accurate gas detection without device breakdown from the mechanical deformations, the stretchable gas sensors often rely on the direct integration of gas-sensitive nanomaterials on the stretchable substrate or fibrous network, as well as being configured into stretchable structures. The nanomaterials in the forms of nanoparticles, nanowires, or thin-films with nanometer thickness are explored for a variety of sensing materials. The commonly used stretchable structures in the stretchable gas sensors include wrinkled structures from a pre-strain strategy, island-bridge layouts or serpentine interconnects, strain isolation approaches, and their combinations. This review aims to summarize the recent advancement in novel nanomaterials, sensor design innovations, and new fabrication approaches of stretchable gas sensors.

11.
ACS Nano ; 8(6): 5843-51, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24684516

RESUMO

Single-crystalline silicon nanomembranes (Si NMs) represent a critically important class of material for high-performance forms of electronics that are capable of complete, controlled dissolution when immersed in water and/or biofluids, sometimes referred to as a type of "transient" electronics. The results reported here include the kinetics of hydrolysis of Si NMs in biofluids and various aqueous solutions through a range of relevant pH values, ionic concentrations and temperatures, and dependence on dopant types and concentrations. In vitro and in vivo investigations of Si NMs and other transient electronic materials demonstrate biocompatibility and bioresorption, thereby suggesting potential for envisioned applications in active, biodegradable electronic implants.


Assuntos
Materiais Biocompatíveis/química , Eletroquímica/métodos , Nanopartículas Metálicas/química , Nanoestruturas/química , Silício/química , Linhagem Celular Tumoral , Cristalização , Dimetilpolisiloxanos/química , Eletrônica , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Íons , Cinética , Teste de Materiais , Membranas Artificiais , Microscopia , Nanotecnologia/métodos , Temperatura
12.
Nat Mater ; 12(10): 938-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24037122

RESUMO

Precision thermometry of the skin can, together with other measurements, provide clinically relevant information about cardiovascular health, cognitive state, malignancy and many other important aspects of human physiology. Here, we introduce an ultrathin, compliant skin-like sensor/actuator technology that can pliably laminate onto the epidermis to provide continuous, accurate thermal characterizations that are unavailable with other methods. Examples include non-invasive spatial mapping of skin temperature with millikelvin precision, and simultaneous quantitative assessment of tissue thermal conductivity. Such devices can also be implemented in ways that reveal the time-dynamic influence of blood flow and perfusion on these properties. Experimental and theoretical studies establish the underlying principles of operation, and define engineering guidelines for device design. Evaluation of subtle variations in skin temperature associated with mental activity, physical stimulation and vasoconstriction/dilation along with accurate determination of skin hydration through measurements of thermal conductivity represent some important operational examples.


Assuntos
Temperatura Cutânea , Termometria/instrumentação , Adulto , Epiderme/fisiologia , Humanos , Masculino , Processos Mentais/fisiologia , Estimulação Física , Descanso , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA