Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(35): e2406506, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38943609

RESUMO

The safe service and wide applications of lightweight high-strength aluminum alloys are seriously challenged by diverse environmental corrosion, since high strength and corrosion resistance are mutually exclusive for metals while surface protection cannot provide life-long corrosion resistance. Here, inspired by fish secreting slime from glands to resist external changes, a strategy of incorporating precipitants as the slime into bulk metals using the inner cavity of opened carbon nanotubes (CNTs) as the glands is developed to enable high-strength aluminum alloys with life-long superior corrosion resistance. The resulting material has ultrahigh tensile strength (≈700 MPa) and extraordinary corrosion resistance in acidic, neutral and alkaline media. Notably, it has the highest resistance to intergranular corrosion, exfoliation corrosion and stress-corrosion cracking, compared with all previously reported aluminum alloys, and its corrosion rate is even much lower than that of corrosion-resistant pure aluminum, which results from the pronounced surface enrichment of precipitants released (secreted) from exposed CNTs forming a protective surface film. Such high corrosion resistance is life-long and self-healing due to the on-demand minimal self-supply of the precipitants dispersed throughout the bulk material. This strategy can be readily expanded to other aluminum alloys, and could pave the way for developing corrosion-resistant high-strength metallic materials.

2.
ACS Nano ; 17(18): 18290-18298, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37706683

RESUMO

Lightweight carbon nanotube fibers (CNTFs) with high electrical conductivity and high tensile strength are considered to be an ideal wiring medium for a wide range of applications. However, connecting CNTFs with metals by soldering is extremely difficult due to the nonreactive nature and poor wettability of CNTs. Here we report a strong connection between single-wall CNTFs (SWCNTFs) and a Cu matrix by introducing an intermediate Ni layer, which enables the formation of mechanically strong and electrically conductive joints between SWCNTFs and a eutectic Sn-37Pb alloy. The electrical resistance change rate (ΔR/R0) of Ni-SWCNTF/solder-Cu interconnects only decreases ∼29.8% after 450 thermal shock cycles between temperatures of -196 and 150 °C, which is 8.2 times lower than that without the Ni layer. First-principles calculations indicate that the introduction of the Ni layer significantly improves the heterogeneous interfacial bond strength of the Ni-SWCNTF/solder-Cu connections.

3.
Molecules ; 27(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36235060

RESUMO

Carbon nanotubes (CNTs) are considered a promising candidate for the detection of toxic gases because of their high specific surface area and excellent electrical and mechanical properties. However, the detecting performance of CNT-based detectors needs to be improved because covalently bonded CNTs are usually chemically inert. We prepared a nitrogen-doped single-wall CNT (SWCNT) film by means of gas-phase fluorination followed by thermal annealing in NH3. The doped nitrogen content could be changed in the range of 2.9-9.9 at%. The N-doped SWCNT films were directly used to construct flexible and transparent gas sensors, which can work at a low voltage of 0.01 V. It was found that their NO2 detection performance was closely related to their nitrogen content. With an optimum nitrogen content of 9.8 at%, a flexible sensor had a detection limit of 500 ppb at room temperature with good cycling ability and stability during bending.

4.
Molecules ; 27(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080149

RESUMO

Single-wall carbon nanotubes (SWCNTs) have a high aspect ratio, large surface area, good stability and unique metallic or semiconducting electrical conductivity, they are therefore considered a promising candidate for the fabrication of flexible gas sensors that are expected to be used in the Internet of Things and various portable and wearable electronics. In this review, we first introduce the sensing mechanism of SWCNTs and the typical structure and key parameters of SWCNT-based gas sensors. We then summarize research progress on the design, fabrication, and performance of SWCNT-based gas sensors. Finally, the principles and possible approaches to further improving the performance of SWCNT-based gas sensors are discussed.


Assuntos
Nanotubos de Carbono , Eletrônica , Nanotubos de Carbono/química
5.
J Colloid Interface Sci ; 608(Pt 1): 599-604, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34628319

RESUMO

Developing high-performance electrocatalysts with favorable phase, surface structure and electronic structure for oxygen evolution reaction (OER) is crucial for efficient electrocatalytic water splitting. With Fe3+ ions as both dopant and morphology-controlling agent, Fe-doped NiS2 microcrystals with the exposed chemically stable {001} facets were synthesized hydrothermally for electrocatalytic OER. The initial electrocatalytic OER activation processes led to the conversion of iron-rich surface layers of the NiS2 microcrystals into Fe-doped Ni (oxy)hydroxide as the shell and the residual inner of the NiS2 microcrystals as the core. Such Fe-doped NiS2 microcrystals with the derived core/shell structure only required a small OER overpotential of 277 mV to reach an electrochemical current density of 10 mA/cm2, and showed a good stability in a more than 20 h duration test almost without overpotential increase.

6.
J Med Primatol ; 49(1): 26-33, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31571234

RESUMO

BACKGROUND: The BTB domain of B-cell lymphoma 6 (BCL6) protein was identified as a therapeutic target for B-cell lymphoma. This study compared the pharmacokinetics (PK) of the BCL6 BTB inhibitor (FX1) between mice and macaques, as well as evaluating its lymphoid suppressive effect in uninfected macaques with lymphoid hyperplasia. MATERIALS AND METHODS: Eight uninfected adult Indian rhesus macaques (Macaca mulatta) were used in the study, four animals carrying lymphoid tissue hyperplasia. Plasma FX1 levels were measured by HPLC-MS/MS. Lymph node biopsies were used for H&E and immunohistochemistry staining, as well as mononuclear cell isolation for flow cytometry analysis. RESULTS: Inhibition of the BCL6 BTB domain with FX1 led to a reduction in the frequency of GC, Tfh CD4+ , and Tfh precursor cells, as well as resolving lymphoid hyperplasia, in rhesus macaques. CONCLUSIONS: B-cell lymphoma 6 inhibition may represent a novel strategy to reduce hyperplastic lymphoid B-cell follicles and decrease Tfh cells.


Assuntos
Hiperplasia/tratamento farmacológico , Indóis/farmacologia , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidores , Células T Auxiliares Foliculares/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Animais , Linfócitos/efeitos dos fármacos , Linfócitos/patologia , Masculino , Camundongos , Células T Auxiliares Foliculares/fisiologia
7.
ACS Appl Mater Interfaces ; 11(45): 42690-42696, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31638382

RESUMO

Direct growth of graphene on the metal surface opens a door for obtaining high-performance composites in a simple way. In order to obtain both high strength and enhanced damping property of the porous metal, we prepared graphene-coated nickel hybrid foams by chemical vapor deposition technique and investigated the static and dynamic mechanical properties using a dynamic mechanical analyzer and vibration testing systems in detail. We found that the presence of graphene layers could greatly improve both mechanical strength and damping properties of nickel foams. The graphene-coated nickel hybrid foams exhibited high yield strength, compressive modulus, and damping ratio, increased by 46, 22, and 53% in comparison with those of nickel foams. Such significant graphene reinforcement in mechanical and damping properties is mainly attributed to the strong interfacial bonding, remarkable confinement effect, and rich interfaces in hybrid foams. By virtue of its high mechanical strength and enhanced damping properties, the graphene/nickel hybrid foams have great potential to be used as multifunctional composite materials in many fields.

8.
Chem Commun (Camb) ; 55(37): 5343-5346, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30994129

RESUMO

Pristine nickel phthalocyanine (NiPc) was introduced as a hole transporting material (HTM) in inverted planar perovskite solar cells (PSCs) for the first time. A power conversion efficiency of 14.3% was achieved, outperforming the values obtained in the solar cells based on the CuPc HTM, which is a typical representative of metal phthalocyanine based HTMs. Moreover, inverted planar PSCs based on NiPc HTMs show a very weak hysteresis behavior.

9.
Small ; 15(15): e1805064, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30821127

RESUMO

An effective, nondestructive, and universal strategy to homogeneously modify freestanding carbon nanotube (CNT) films with various active species is essential to achieve functional electrodes for flexible electrochemical energy storage, which is challenging and has attracted considerable research interest. In this work, a generalizable concept, to utilize silicon oxide as the intermediate to uniformly decorate various metal sulfide nanostructures throughout CNT films is reported. Taking nickel sulfide nanosheet/CNT (NS/CNT) films, in which the NS nanosheets are homogeneously attached on the intact few-walled CNTs, as an example, the sheet-like NS provides sufficient active sites for redox reactions and the CNT network acts as an efficient electron highway, maintaining the structural integrity of the composite and also buffering volume changes. These merits enable NS/CNT films to meet the requirements of versatile energy storage applications. When used for supercapacitors, a high specific capacitance (2699.7 F g-1 /10 A g-1 ), outstanding rate performance at extremely high rates (1527 F g-1 /250 A g-1 ), remarkable cycling stability, and excellent flexibility can be achieved, among the best performance so far. Moreover, it also delivers excellent performance in the storage of Li and Na ions, meaning it is also potentially suitable for Li/Na ion batteries.

10.
Angew Chem Int Ed Engl ; 58(35): 11978-11996, 2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-30687993

RESUMO

Aluminum battery systems are considered as a system that could supplement current lithium batteries due to the low cost and high volumetric capacity of aluminum metal, and the high safety of the whole battery system. However, first the use of ionic liquid electrolytes leading to AlCl4 - instead of Al3+ , the different intercalation reagents, the sluggish solid diffusion process and the fast capacity fading during cycling in aluminum batteries all need to be thoroughly explored. To provide a good understanding of the opportunities and challenges of the newly emerging aluminum batteries, this Review discusses the reaction mechanisms and the difficulties caused by the trivalent reaction medium in electrolytes, electrodes, and electrode-electrolyte interfaces. It is hoped that the Review will stimulate scientists and engineers to develop more reliable aluminum batteries.

11.
Angew Chem Int Ed Engl ; 57(7): 1898-1902, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29276817

RESUMO

The electrochemical performance of the aluminum-sulfur (Al-S) battery has very poor reversibility and a low charge/discharge current density owing to slow kinetic processes determined by an inevitable dissociation reaction from Al2 Cl7- to free Al3+ . Al2 Cl6 Br- was used instead of Al2 Cl7- as the dissociation reaction reagent. A 15-fold faster reaction rate of Al2 Cl6 Br- dissociation than that of Al2 Cl7- was confirmed by density function theory calculations and the Arrhenius equation. This accelerated dissociation reaction was experimentally verified by the increase of exchange current density during Al electro-deposition. Using Al2 Cl6 Br- instead of Al2 Cl7- , a kinetically accelerated Al-S battery has a sulfur utilization of more than 80 %, with at least four times the sulfur content and five times the current density than that of previous work.

12.
Adv Sci (Weinh) ; 3(10): 1600113, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27840800

RESUMO

Carbon nanotubes (CNTs) filled with iron sulfide nanoparticles (NPs) are prepared by inserting sulfur and ferrocene into the hollow core of CNTs followed by heat treatment. It is found that pyrrhotite-11T iron sulfide (Fe-S) NPs with an average size of ≈15 nm are encapsulated in the tubular cavity of the CNTs (Fe-S@CNTs), and each particle is a single crystal. When used as the anode material of lithium-ion batteries, the Fe-S@CNT material exhibits excellent electrochemical lithium storage performance in terms of high reversible capacity, good cyclic stability, and desirable rate capability. In situ transmission electron microscopy studies show that the CNTs not only play an essential role in accommodating the volume expansion of the Fe-S NPs but also provide a fast transport path for Li ions. The results demonstrate that CNTs act as a unique nanocontainer and reactor that permit the loading and formation of electrochemically active materials with desirable electrochemical lithium storage performance. CNTs with their superior structural stability and Li-ion transfer kinetics are responsible for the improved rate capability and cycling performance of Fe-S NPs in CNTs.

13.
Adv Mater ; 27(4): 641-7, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25377991

RESUMO

A flexible Li-S battery based on an integrated structure of sulfur and graphene on a separator is developed. The internal graphene current collector offers a continuous conductive pathway, a modified interface with sulfur, and a good barrier to and an effective reservoir for dissolved polysulfides, consequently improving the capacity and cyclic life of the Li-S battery.

14.
ACS Nano ; 8(1): 292-301, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24354297

RESUMO

We report a simple, versatile in situ transmission electron microscopy (TEM) approach for investigating the nucleation and growth mechanism of carbon nanotubes (CNTs), by which the composition, phase transition, and physical state of various catalysts can be clearly resolved. In our approach, catalyst nanoparticles (NPs) are placed in a multiwall CNT "tubular furnace" with two open ends, and a high temperature is obtained by Joule heating in the specimen chamber of a TEM. The carbon is supplied by electron irradiation-induced injection of carbon atoms. Comparative studies on the catalytic behavior of traditional iron oxide and recently discovered gold catalysts were performed. It was found that the growth of CNTs from iron oxide involves the reduction of Fe2O3 to Fe3C, nucleation and growth of CNTs from partially liquefied Fe3C, and finally the formation of elemental Fe when the growth stops. In contrast, while changes in shape, size, and orientation were also observed for the fluctuating Au NPs, no chemical reactions or phase transitions occurred during the nucleation of CNTs. These two distinct nucleation and growth processes and mechanisms would be valuable for the structure-controlled growth of CNTs by catalyst design and engineering.

15.
Sci Rep ; 1: 166, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22355681

RESUMO

Nanostructures are known to be exquisitely sensitive to the chemical environment and offer ultra-high sensitivity for gas-sensing. However, the fabrication and operation of devices that use individual nanostructures for sensing is complex, expensive and suffers from poor reliability due to contamination and large variability from sample-to-sample. By contrast, conventional solid-state and conducting-polymer sensors offer excellent reliability but suffer from reduced sensitivity at room-temperature. Here we report a macro graphene foam-like three-dimensional network which combines the best of both worlds. The walls of the foam are comprised of few-layer graphene sheets resulting in high sensitivity; we demonstrate parts-per-million level detection of NH(3) and NO(2) in air at room-temperature. Further, the foam is a mechanically robust and flexible macro-scale network that is easy to contact (without Lithography) and can rival the durability and affordability of traditional sensors. Moreover, Joule-heating expels chemisorbed molecules from the foam's surface leading to fully-reversible and low-power operation.

16.
Antimicrob Agents Chemother ; 52(9): 3327-38, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18559648

RESUMO

HCV-796 selectively inhibits hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase. In hepatoma cells containing a genotype 1b HCV replicon, HCV-796 reduced HCV RNA levels by 3 to 4 log(10) HCV copies/mug total RNA (the concentration of the compound that inhibited 50% of the HCV RNA level was 9 nM). Cells bearing replicon variants with reduced susceptibility to HCV-796 were generated in the presence of HCV-796, followed by G418 selection. Sequence analysis of the NS5B gene derived from the replicon variants revealed several amino acid changes within 5 A of the drug-binding pocket. Specifically, mutations were observed at Leu314, Cys316, Ile363, Ser365, and Met414 of NS5B, which directly interact with HCV-796. The impacts of the amino acid substitutions on viral fitness and drug susceptibility were examined in recombinant replicons and NS5B enzymes with the single-amino-acid mutations. The replicon variants were 10- to 1,000-fold less efficient in forming colonies in cells than the wild-type replicon; the S365L variant failed to establish a stable cell line. Other variants (L314F, I363V, and M414V) had four- to ninefold-lower steady-state HCV RNA levels. Reduced binding affinity with HCV-796 was demonstrated in an enzyme harboring the C316Y mutation. The effects of these resistance mutations were structurally rationalized using X-ray crystallography data. While different levels of resistance to HCV-796 were observed in the replicon and enzyme variants, these variants retained their susceptibilities to pegylated interferon, ribavirin, and other HCV-specific inhibitors. The combined virological, biochemical, biophysical, and structural approaches revealed the mechanism of resistance in the variants selected by the potent polymerase inhibitor HCV-796.


Assuntos
Antivirais/farmacologia , Benzofuranos/antagonistas & inibidores , Farmacorresistência Viral , Inibidores Enzimáticos/farmacologia , Variação Genética , Hepacivirus/efeitos dos fármacos , Replicon/efeitos dos fármacos , Antivirais/metabolismo , Linhagem Celular Tumoral , Clonagem Molecular , Inibidores Enzimáticos/metabolismo , Genótipo , Hepacivirus/genética , Hepacivirus/fisiologia , Humanos , Modelos Moleculares , Mutação , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Replicon/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
17.
Nanotechnology ; 19(16): 165606, 2008 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-21825650

RESUMO

Ni silicides in the form of nanobelts and nanosheets were synthesized for the first time based on the chemical reaction of Ni substrate with SiHCl(3) under H(2) atmosphere at 900 °C. Their morphological, structural and compositional features were characterized in detail using scanning electron microscopy, transmission electron microscopy, electron diffraction, energy-dispersive x-ray spectroscopy and x-ray diffraction. It was found that the nanobelts, 120-180 nm in thickness and 1-5 µm in width, comprise a single Ni(3)Si phase and the nanosheets 20-80 nm in thickness consist of Ni(3)Si and Ni(31)Si(12), which is influenced by the concentration ratio of SiHCl(3) to H(2). Moreover, the potential application of these Ni silicides in electrochemical energy storage was also investigated. The results indicate that the nanosheets have excellent electrochemical performance when used as anode material for high energy density lithium ion batteries: a reversible capacity of more than 540 mA h g(-1) can be maintained even for the 20th cycle in a standard Li(+) half-cell.

18.
Antimicrob Agents Chemother ; 50(12): 4103-13, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16940072

RESUMO

A new pyranoindole class of small-molecule inhibitors was studied to understand viral resistance and elucidate the mechanism of inhibition in hepatitis C virus (HCV) replication. HCV replicon variants less susceptible to inhibition by the pyranoindoles were selected in Huh-7 hepatoma cells. Variant replicons contained clusters of mutations in the NS5B polymerase gene corresponding to the drug-binding pocket on the surface of the thumb domain identified by X-ray crystallography. An additional cluster of mutations present in part of a unique beta-hairpin loop was also identified. The mutations were characterized by using recombinant replicon variants engineered with the corresponding amino acid substitutions. A single mutation (L419M or M423V), located at the pyranoindole-binding site, resulted in an 8- to 10-fold more resistant replicon, while a combination mutant (T19P, M71V, A338V, M423V, A442T) showed a 17-fold increase in drug resistance. The results of a competition experiment with purified NS5B enzyme with GTP showed that the inhibitory activity of the pyranoindole inhibitor was not affected by GTP at concentrations up to 250 microM. Following de novo initiation, the presence of a pyranoindole inhibitor resulted in the accumulation of a five-nucleotide oligomer, with a concomitant decrease in higher-molecular-weight products. The results of these studies have confirmed that pyranoindoles target the NS5B polymerase through interactions at the thumb domain. This inhibition is independent of GTP concentrations and is likely mediated by an allosteric blockade introduced by the inhibitor during the transition to RNA elongation after the formation of an initiation complex.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Substituição de Aminoácidos , Sítios de Ligação , Ligação Competitiva , Linhagem Celular Tumoral , Cristalografia por Raios X , Farmacorresistência Viral/genética , Genes Virais , Engenharia Genética , Variação Genética , Guanosina Trifosfato/metabolismo , Hepacivirus/genética , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , RNA Viral/genética , Recombinação Genética , Replicon/genética , Seleção Genética , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA