Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Hazard Mater ; 470: 134208, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593663

RESUMO

This study introduces an innovative strategy for the rapid and accurate identification of pesticide residues in agricultural products by combining surface-enhanced Raman spectroscopy (SERS) with a state-of-the-art transformer model, termed SERSFormer. Gold-silver core-shell nanoparticles were synthesized and served as high-performance SERS substrates, which possess well-defined structures, uniform dispersion, and a core-shell composition with an average diameter of 21.44 ± 4.02 nm, as characterized by TEM-EDS. SERSFormer employs sophisticated, task-specific data processing techniques and CNN embedders, powered by an architecture features weight-shared multi-head self-attention transformer encoder layers. The SERSFormer model demonstrated exceptional proficiency in qualitative analysis, successfully classifying six categories, including five pesticides (coumaphos, oxamyl, carbophenothion, thiabendazole, and phosmet) and a control group of spinach data, with 98.4% accuracy. For quantitative analysis, the model accurately predicted pesticide concentrations with a mean absolute error of 0.966, a mean squared error of 1.826, and an R2 score of 0.849. This novel approach, which combines SERS with machine learning and is supported by robust transformer models, showcases the potential for real-time pesticide detection to improve food safety in the agricultural and food industries.


Assuntos
Ouro , Aprendizado de Máquina , Nanopartículas Metálicas , Praguicidas , Prata , Análise Espectral Raman , Spinacia oleracea , Análise Espectral Raman/métodos , Spinacia oleracea/química , Nanopartículas Metálicas/química , Prata/química , Ouro/química , Praguicidas/análise , Contaminação de Alimentos/análise , Resíduos de Praguicidas/análise
2.
World J Oncol ; 15(2): 149-168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38545477

RESUMO

Pigs are playing an increasingly vital role as translational biomedical models for studying human pathophysiology. The annotation of the pig genome was a huge step forward in translatability of pigs as a biomedical model for various human diseases. Similarities between humans and pigs in terms of anatomy, physiology, genetics, and immunology have allowed pigs to become a comprehensive preclinical model for human diseases. With a diverse range, from craniofacial and ophthalmology to reproduction, wound healing, musculoskeletal, and cancer, pigs have provided a seminal understanding of human pathophysiology. This review focuses on the current research using pigs as preclinical models for cancer research and highlights the strengths and opportunities for studying various human cancers.

3.
Hum Mol Genet ; 32(13): 2205-2218, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37014740

RESUMO

As an aneuploidy, trisomy is associated with mammalian embryonic and postnatal abnormalities. Understanding the underlying mechanisms involved in mutant phenotypes is broadly important and may lead to new strategies to treat clinical manifestations in individuals with trisomies, such as trisomy 21 [Down syndrome (DS)]. Although increased gene dosage effects because of a trisomy may account for the mutant phenotypes, there is also the possibility that phenotypic consequences of a trisomy can arise because of the presence of a freely segregating extra chromosome with its own centromere, i.e. a 'free trisomy' independent of gene dosage effects. Presently, there are no reports of attempts to functionally separate these two types of effects in mammals. To fill this gap, here we describe a strategy that employed two new mouse models of DS, Ts65Dn;Df(17)2Yey/+ and Dp(16)1Yey/Df(16)8Yey. Both models carry triplications of the same 103 human chromosome 21 gene orthologs; however, only Ts65Dn;Df(17)2Yey/+ mice carry a free trisomy. Comparison of these models revealed the gene dosage-independent impacts of an extra chromosome at the phenotypic and molecular levels for the first time. They are reflected by impairments of Ts65Dn;Df(17)2Yey/+ males in T-maze tests when compared with Dp(16)1Yey/Df(16)8Yey males. Results from the transcriptomic analysis suggest the extra chromosome plays a major role in trisomy-associated expression alterations of disomic genes beyond gene dosage effects. This model system can now be used to deepen our mechanistic understanding of this common human aneuploidy and obtain new insights into the effects of free trisomies in other human diseases such as cancers.


Assuntos
Síndrome de Down , Masculino , Camundongos , Humanos , Animais , Síndrome de Down/genética , Trissomia/genética , Aneuploidia , Cromossomos , Dosagem de Genes , Modelos Animais de Doenças , Mamíferos/genética
4.
Plant Commun ; 4(2): 100467, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36307986

RESUMO

Genomic imbalance refers to the more severe phenotypic consequences of changing part of a chromosome compared with the whole genome set. Previous genome imbalance studies in maize have identified prevalent inverse modulation of genes on the unvaried chromosomes (trans) with both the addition or subtraction of chromosome arms. Transposable elements (TEs) comprise a substantial fraction of the genome, and their reaction to genomic imbalance is therefore of interest. Here, we analyzed TE expression using RNA-seq data of aneuploidy and ploidy series and found that most aneuploidies showed an inverse modulation of TEs, but reductions in monosomy and increases in disomy and trisomy were also common. By contrast, the ploidy series showed little TE modulation. The modulation of TEs and genes in the same experimental group were compared, and TEs showed greater modulation than genes, especially in disomy. Class I and II TEs were differentially modulated in most aneuploidies, and some superfamilies in each TE class also showed differential modulation. Finally, the significantly upregulated TEs in three disomies (TB-7Lb, TB9Lc, and TB-10L19) did not increase the proportion of adjacent gene expression when compared with non-differentially expressed TEs, indicating that modulations of TEs do not compound the effect on genes. These results suggest that the prevalent inverse TE modulation in aneuploidy results from stoichiometric upset of the regulatory machinery used by TEs, similar to the response of core genes to genomic imbalance.


Assuntos
Elementos de DNA Transponíveis , Zea mays , Elementos de DNA Transponíveis/genética , Zea mays/genética , Genômica , Aneuploidia
5.
medRxiv ; 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38168424

RESUMO

Beckwith-Wiedemann Syndrome (BWS, OMIM #130650) is a congenital epigenetic disorder in humans which affects approximately 1 in 10,340 children. The incidence is likely an underestimation as the condition is usually recognized based on observable phenotypes at birth. BWS children have up to a 28% risk of developing tumors and currently, only 80% of patients can be corroborated molecularly (epimutations/variants). It is unknown how the subtypes of this condition are molecularly similar/dissimilar globally, therefore there is a need to deeply characterize the syndrome at the molecular level. Here we characterize the methylome, transcriptome and chromatin configuration of 18 BWS individuals together with the animal model of the condition, the bovine large offspring syndrome (LOS). Sex specific comparisons are performed for a subset of the BWS patients and LOS. Given that this epigenetic overgrowth syndrome has been characterized as a loss-of-imprinting condition, parental allele-specific comparisons were performed using the bovine animal model. In general, the differentially methylated regions (DMRs) detected in BWS and LOS showed significant enrichment for CTCF binding sites. Altered chromosome compartments in BWS and LOS were positively correlated with gene expression changes, and the promoters of differentially expressed genes showed significant enrichment for DMRs, differential topologically associating domains, and differential A/B compartments in some comparisons of BWS subtypes and LOS. We show shared regions of dysregulation between BWS and LOS, including several HOX gene clusters, and also demonstrate that altered DNA methylation differs between the clinically epigenetically identified BWS patients and those identified as having DNA variants (i.e. CDKN1C microdeletion). Lastly, we highlight additional genes and genomic regions that have the potential to serve as targets for biomarker development to improve current molecular methodologies. In summary, our results suggest that genome-wide alternation of chromosome architecture, which is partially caused by DNA methylation changes, also contribute to the development of BWS and LOS.

6.
Nat Commun ; 13(1): 3014, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641525

RESUMO

The genomic imbalance caused by varying the dosage of individual chromosomes or chromosomal segments (aneuploidy) has more detrimental effects than altering the dosage of complete chromosome sets (ploidy). Previous analysis of maize (Zea mays) aneuploids revealed global modulation of gene expression both on the varied chromosome (cis) and the remainder of the genome (trans). However, little is known regarding the role of microRNAs (miRNAs) under genomic imbalance. Here, we report the impact of aneuploidy and polyploidy on the expression of miRNAs. In general, cis miRNAs in aneuploids present a predominant gene-dosage effect, whereas trans miRNAs trend toward the inverse level, although other types of responses including dosage compensation, increased effect, and decreased effect also occur. By contrast, polyploids show less differential miRNA expression than aneuploids. Significant correlations between expression levels of miRNAs and their targets are identified in aneuploids, indicating the regulatory role of miRNAs on gene expression triggered by genomic imbalance.


Assuntos
MicroRNAs , Zea mays , Aneuploidia , Expressão Gênica , Genômica , MicroRNAs/genética , Poliploidia , Zea mays/genética
7.
Plant Signal Behav ; 17(1): 2010389, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34951328

RESUMO

Anthocyanins are natural colorants are synthesized in a branch of the flavonoid pathway. Dihydroflavonol-4reductase (DFR) catalyzes dihydroflavonoids into anthocyanins biosynthesis, which is a key regulatory enzyme of anthocyanin biosynthesis in plants. Hosta ventricosa is an ornamental plant with elegant flowers and rich colorful leaves. How the function of HvDFR contributes to the anthocyanins biosynthesis is still unknown. In this study, the DFR homolog was identified from H. ventricosa and sequence analysis showed that HvDFR possessed the conserved NADPH binding and catalytic domains. A phylogenetic analysis showed that HvDFR was close to the clade formed with MaDFR and HoDFR in Asparagaceae. Gene expression analysis revealed that HvDFR was constitutive expressed in all tissues and expressed highly in flower as well as was positively correlated with anthocyanin content. In addition, the subcellular location of HvDFR showed that is in the nucleus and cell membrane. Overexpression of HvDFR in transgenic tobacco lines enhanced the anthocyanins accumulation along with the key genes upregulated, such as F3H, F3'H, ANS, and UFGT. Our results indicated a functional activity of the HvDFR, which provide an insight into the regulation of anthocyanins content in H. ventricosa.


Assuntos
Antocianinas , Hosta , Antocianinas/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Hosta/metabolismo , Filogenia , Proteínas de Plantas/metabolismo
8.
Luminescence ; 36(3): 698-704, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33270343

RESUMO

A simple and sensitive colorimetric sensing method was constructed for detection of Hg2+ in aqueous solutions and based on silver nanoparticles functionalized with l-cysteine (l-Cys-Ag NPs). In this method, adenosine triphosphate (ATP) induced aggregation of l-Cys-Ag NPs. Simultaneously, the solution colour changed from bright yellow to brown. In the presence of Hg2+ , Hg2+ chelated ATP to form a complex and reduce the degree of aggregation of l-Cys-Ag NPs and was accompanied by a colour change from brown to bright yellow. The changing values of absorbance at 390 nm were linearly correlated with concentration of Hg2+ over the 4.00 × 10-8 to 1.04 × 10-6 mol·L-1 range, with a detection limit of 8 nM. This method was used successfully for detection of Hg2+ in real water samples and performed good selectivity and sensitivity. The recovery range was 91.5-109.1%, indicating that the method has vast application potential for determination of Hg2+ in the environment.


Assuntos
Mercúrio , Nanopartículas Metálicas , Colorimetria , Cisteína , Prata , Água
9.
Pigment Cell Melanoma Res ; 33(6): 850-868, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32558263

RESUMO

Biosynthesis and degradation of heme, an iron-bound protoporphyrin molecule utilized by a wide variety of metabolic processes, are tightly regulated. Two closely related enzymes, heme oxygenase 1 (HMOX1) and heme oxygenase 2 (HMOX2), degrade free heme to produce carbon monoxide, Fe2+ , and biliverdin. HMOX1 expression is controlled via the transcriptional activator, NFE2L2, and the transcriptional repressor, Bach1. Transcription of HMOX1 and other NFE2L2-dependent genes is increased in response to electrophilic and reactive oxygen species. Many tumor-derived cell lines have elevated levels of NFE2L2. Elevated expression of NFE2L2-dependent genes contributes to tumor growth and acquired resistance to therapies. Here, we report a novel role for heme oxygenase activity in melanosphere formation by human melanoma-derived cell lines. Transcriptional induction of HMOX1 through derepression of Bach1 or transcriptional activation of HMOX2 by oncogenic B-RafV600E results in increased melanosphere formation. Genetic ablation of HMOX1 diminishes melanosphere formation. Further, inhibition of heme oxygenase activity with tin protoporphyrin markedly reduces melanosphere formation driven by either Bach1 derepression or B-RafV600E expression. Global transcriptome analyses implicate genes involved in focal adhesion and extracellular matrix interactions in melanosphere formation.


Assuntos
Heme Oxigenase (Desciclizante)/metabolismo , Melanócitos/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Esferoides Celulares/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Heme Oxigenase (Desciclizante)/genética , Humanos , Masculino , Melanócitos/efeitos dos fármacos , Mutação/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oncogenes , Proto-Oncogene Mas , Protoporfirinas/farmacologia , Esferoides Celulares/efeitos dos fármacos
10.
J Genet Genomics ; 47(2): 93-103, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32178980

RESUMO

Aneuploidy has profound effects on an organism, typically more so than polyploidy, and the basis of this contrast is not fully understood. A dosage series of the maize long arm of chromosome 1 (1L) was used to compare relative global gene expression in different types and degrees of aneuploidy to gain insights into how the magnitude of genomic imbalance as well as hypoploidy affects global gene expression. While previously available methods require a selective examination of specific genes, RNA sequencing provides a whole-genome view of gene expression in aneuploids. Most studies of global aneuploidy effects have concentrated on individual types of aneuploids because multiple dose aneuploidies of the same genomic region are difficult to produce in most model genetic organisms. The genetic toolkit of maize allows the examination of multiple ploidies and 1-4 doses of chromosome arms. Thus, a detailed examination of expression changes both on the varied chromosome arms and elsewhere in the genome is possible, in both hypoploids and hyperploids, compared with euploid controls. Previous studies observed the inverse trans effect, in which genes not varied in DNA dosage were expressed in a negative relationship to the varied chromosomal region. This response was also the major type of changes found globally in this study. Many genes varied in dosage showed proportional expression changes, though some were seen to be partly or fully dosage compensated. It was also found that the effects of aneuploidy were progressive, with more severe aneuploids producing effects of greater magnitude.


Assuntos
Aneuploidia , Dosagem de Genes/genética , Genoma de Planta/genética , Zea mays/genética , Regulação da Expressão Gênica de Plantas/genética
11.
Methods Mol Biol ; 2093: 161-171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32088896

RESUMO

Dosage effects in plants are caused by changes in the copy number of chromosomes, segments of chromosomes, or multiples of individual genes. Genes often exhibit a dosage effect in which the amount of product is closely correlated with the number of copies present. However, when larger segments of chromosomes are varied, there are trans-acting effects across the genome that are unleashed that modulate gene expression in cascading effects. These appear to be mediated by the stoichiometric relationship of gene regulatory machineries. There are both positive and negative modulations of target gene expression, but the latter is the plurality effect. When this inverse effect is combined with a dosage effect, compensation for a gene can occur in which its expression is similar to the normal diploid regardless of the change in chromosomal dosage. In contrast, changing the whole genome in a polyploidy series has fewer relative effects as the stoichiometric relationship is not disrupted. Together, these observations suggest that the stoichiometry of gene regulation is important as a reflection of the mode of assembly of the individual subunits involved in the effective regulatory macromolecular complexes. This principle has implications for gene expression mechanisms, quantitative trait genetics, and the evolution of genes depending on the mode of duplication, either segmentally or via whole-genome duplication.


Assuntos
Epigênese Genética/genética , Dosagem de Genes/genética , Plantas/genética , Aneuploidia , Cromossomos de Plantas/genética , Epigenômica/métodos , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Frequência do Gene/genética , Genoma de Planta/genética , Fenótipo , Poliploidia , Característica Quantitativa Herdável
12.
Cell Mol Life Sci ; 77(12): 2423-2440, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31486849

RESUMO

Cysteine and aromatic residues are major structure-promoting residues. We assessed the abundance, structural coverage, and functional characteristics of the "non-smelly" proteins, i.e., proteins that do not contain cysteine residues (C-depleted) or cysteine and aromatic residues (CFYWH-depleted), across 817 proteomes from all domains of life. The analysis revealed that although these proteomes contained significant levels of the C-depleted proteins, with prokaryotes being significantly more enriched in such proteins than eukaryotes, the CFYWH-depleted proteins were relatively rare, accounting for about 0.05% of proteomes. Furthermore, CFYWH-depleted proteins were virtually never found in PDB. Depletion in cysteine and in aromatic residues was associated with the substantially increased intrinsic disorder levels across all domains of life. Archaeal and eukaryotic organisms with higher levels of the C-depleted proteins were shown to have higher levels of the intrinsic disorder and lower levels of structural coverage. We also showed that the "non-smelly" proteins typically did not independently fold into monomeric structures, and instead, they fold by interacting with nucleic acids as constituents of the ribosome and nucleosome complexes. They were shown to be involved in translation, transcription, nucleosome assembly, transmembrane transport, and protein folding functions, all of which are known to be associated with the intrinsic disorder. Our data suggested that, in general, structure of monomeric proteins is crucially dependent on the presence of cysteine and aromatic residues.


Assuntos
Proteínas/metabolismo , Archaea/metabolismo , Cisteína/metabolismo , Eucariotos/metabolismo , Nucleossomos/metabolismo , Células Procarióticas/metabolismo , Conformação Proteica , Proteoma/metabolismo , Ribossomos/metabolismo
13.
Transl Stroke Res ; 10(5): 546-556, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30465328

RESUMO

Ischemic stroke is a devastating neurological disease that can cause permanent brain damage, but to date, few biomarkers are available to reliably assess the severity of injury during acute onset. In this study, quantitative proteomic analysis of ischemic mouse brain detected the increase in expression levels of clusterin (CLU) and cystatin C (CST3). Since CLU is a secretary protein, serum samples (n = 70) were obtained from acute ischemic stroke (AIS) patients within 24 h of stroke onset and together with 70 matched health controls. Analysis of CLU levels indicated significantly higher levels in AIS patients than healthy controls (14.91 ± 4.03 vs. 12.79 ± 2.22 ng/L; P = 0.0004). Analysis of serum CST3 also showed significant increase in AIS patients as compared with healthy controls (0.90 ± 0.19 vs. 0.84 ± 0.12 ng/L; P = 0.0064). The serum values of CLU were also positively correlated with the NIH Stroke Scale (NIHSS) scores, the time interval after stroke onset, as well as major stroke risk factors associated with lipid profile. These data demonstrate that elevated levels of serum CLU and CST3 are independently associated with AIS and may serve as peripheral biomarkers to aid clinical assessment of AIS and its severity. This pilot study thus contributes to progress toward preclinical proteomic screening by using animal models and allows translation of results from bench to bedside.


Assuntos
Isquemia Encefálica/sangue , Clusterina/sangue , Acidente Vascular Cerebral/sangue , Idoso , Animais , Biomarcadores/sangue , Isquemia Encefálica/complicações , Cistatina C/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Proteoma/metabolismo , Acidente Vascular Cerebral/complicações
14.
Proc Natl Acad Sci U S A ; 115(48): E11321-E11330, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30429332

RESUMO

Changes in dosage of part of the genome (aneuploidy) have long been known to produce much more severe phenotypic consequences than changes in the number of whole genomes (ploidy). To examine the basis of these differences, global gene expression in mature leaf tissue for all five trisomies and in diploids, triploids, and tetraploids of Arabidopsis thaliana was studied. The trisomies displayed a greater spread of expression modulation than the ploidy series. In general, expression of genes on the varied chromosome ranged from compensation to dosage effect, whereas genes from the remainder of the genome ranged from no effect to reduced expression approaching the inverse level of chromosomal imbalance (2/3). Genome-wide DNA methylation was examined in each genotype and found to shift most prominently with trisomy 4 but otherwise exhibited little change, indicating that genetic imbalance is generally mechanistically unrelated to DNA methylation. Independent analysis of gene functional classes demonstrated that ribosomal, proteasomal, and gene body methylated genes were less modulated compared with all classes of genes, whereas transcription factors, signal transduction components, and organelle-targeted protein genes were more tightly inversely affected. Comparing transcription factors and their targets in the trisomies and in expression networks revealed considerable discordance, illustrating that altered regulatory stoichiometry is a major contributor to genetic imbalance. Reanalysis of published data on gene expression in disomic yeast and trisomic mouse cells detected similar stoichiometric effects across broad phylogenetic taxa, and indicated that these effects reflect normal gene regulatory processes.


Assuntos
Arabidopsis/genética , Cromossomos de Plantas/genética , Drosophila/genética , Camundongos/genética , Aneuploidia , Animais , Cromossomos/genética , Metilação de DNA , Expressão Gênica , Poliploidia , Trissomia , Leveduras/genética
15.
BMC Genomics ; 19(1): 161, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29471801

RESUMO

BACKGROUND: The development of chromosomal conformation capture techniques, particularly, the Hi-C technique, has made the analysis and study of the spatial conformation of a genome an important topic in bioinformatics and computational biology. Aided by high-throughput next generation sequencing techniques, the Hi-C technique can generate genome-wide, large-scale intra- and inter-chromosomal interaction data capable of describing in details the spatial interactions within a genome. These data can be used to reconstruct 3D structures of chromosomes that can be used to study DNA replication, gene regulation, genome interaction, genome folding, and genome function. RESULTS: Here, we introduce a maximum likelihood algorithm called 3DMax to construct the 3D structure of a chromosome from Hi-C data. 3DMax employs a maximum likelihood approach to infer the 3D structures of a chromosome, while automatically re-estimating the conversion factor (α) for converting Interaction Frequency (IF) to distance. Our results show that the models generated by 3DMax from a simulated Hi-C dataset match the true models better than most of the existing methods. 3DMax is more robust to structural variability and noise. Compared on a real Hi-C dataset, 3DMax constructs chromosomal models that fit the data better than most methods, and it is faster than all other methods. The models reconstructed by 3DMax were consistent with fluorescent in situ hybridization (FISH) experiments and existing knowledge about the organization of human chromosomes, such as chromosome compartmentalization. CONCLUSIONS: 3DMax is an effective approach to reconstructing 3D chromosomal models. The results, and the models generated for the simulated and real Hi-C datasets are available here: http://sysbio.rnet.missouri.edu/bdm_download/3DMax/ . The source code is available here: https://github.com/BDM-Lab/3DMax . A short video demonstrating how to use 3DMax can be found here: https://youtu.be/ehQUFWoHwfo .


Assuntos
Algoritmos , Cromossomos Humanos , Biologia Computacional/métodos , Genoma Humano , Imageamento Tridimensional/métodos , Conjuntos de Dados como Assunto , Humanos , Hibridização in Situ Fluorescente , Funções Verossimilhança , Linfócitos/metabolismo , Modelos Moleculares , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
16.
Sci Rep ; 6: 35323, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27734935

RESUMO

Aged garlic extract (AGE) is widely used as a dietary supplement on account of its protective effects against oxidative stress and inflammation. But less is known about specific molecular targets of AGE and its bioactive components, including N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). Our recent study showed that both AGE and FruArg significantly attenuate lipopolysaccharide (LPS)-induced neuroinflammatory responses in BV-2 microglial cells. This study aims to unveil effects of AGE and FruArg on gene expression regulation in LPS stimulated BV-2 cells. Results showed that LPS treatment significantly altered mRNA levels from 2563 genes. AGE reversed 67% of the transcriptome alteration induced by LPS, whereas FruArg accounted for the protective effect by reversing expression levels of 55% of genes altered by LPS. Key pro-inflammatory canonical pathways induced by the LPS stimulation included toll-like receptor signaling, IL-6 signaling, and Nrf2-mediated oxidative stress pathway, along with elevated expression levels of genes, such as Il6, Cd14, Casp3, Nfkb1, Hmox1, and Tnf. These effects could be modulated by treatment with both AGE and FruArg. These findings suggests that AGE and FruArg are capable of alleviating oxidative stress and neuroinflammatory responses stimulated by LPS in BV-2 cells.


Assuntos
Arginina/análogos & derivados , Arginina/farmacologia , Frutose/análogos & derivados , Frutose/farmacologia , Alho/química , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antioxidantes/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Inflamação , Interleucina-6/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Análise de Componente Principal , RNA Mensageiro/metabolismo , Transdução de Sinais , Transcriptoma
17.
Bioinformatics ; 32(18): 2791-9, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27259540

RESUMO

MOTIVATION: Recent experimental studies have suggested that proteins fold via stepwise assembly of structural units named 'foldons' through the process of sequential stabilization. Alongside, latest developments on computational side based on probabilistic modeling have shown promising direction to perform de novo protein conformational sampling from continuous space. However, existing computational approaches for de novo protein structure prediction often randomly sample protein conformational space as opposed to experimentally suggested stepwise sampling. RESULTS: Here, we develop a novel generative, probabilistic model that simultaneously captures local structural preferences of backbone and side chain conformational space of polypeptide chains in a united-residue representation and performs experimentally motivated conditional conformational sampling via stepwise synthesis and assembly of foldon units that minimizes a composite physics and knowledge-based energy function for de novo protein structure prediction. The proposed method, UniCon3D, has been found to (i) sample lower energy conformations with higher accuracy than traditional random sampling in a small benchmark of 6 proteins; (ii) perform comparably with the top five automated methods on 30 difficult target domains from the 11th Critical Assessment of Protein Structure Prediction (CASP) experiment and on 15 difficult target domains from the 10th CASP experiment; and (iii) outperform two state-of-the-art approaches and a baseline counterpart of UniCon3D that performs traditional random sampling for protein modeling aided by predicted residue-residue contacts on 45 targets from the 10th edition of CASP. AVAILABILITY AND IMPLEMENTATION: Source code, executable versions, manuals and example data of UniCon3D for Linux and OSX are freely available to non-commercial users at http://sysbio.rnet.missouri.edu/UniCon3D/ CONTACT: chengji@missouri.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Modelos Estatísticos , Conformação Proteica , Benchmarking , Biologia Computacional/métodos , Modelos Moleculares , Física , Probabilidade , Proteínas
18.
BMC Mol Biol ; 16: 21, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627478

RESUMO

BACKGROUND: Orphan nuclear receptor estrogen related receptor ß (Esrrb or ERRß) is well known in stem cells and early embryonic development. However, little is known about its function in cancer. METHOD: We investigated the mRNA profile alterations induced by Esrrb expression and its synthetic ligand DY131 in human prostate cancer DU145 cells via RNA-Seq analysis. RESULTS: We distinguished 67 mRNAs differentially expressed by Esrrb alone. Although DY131 alone did not change any gene, treatment of DY131 in the presence of Esrrb altered 1161 mRNAs. These observations indicated Esrrb had both ligand-independent and ligand-dependent activity. When Esrrb was expressed, DY131 treatment further regulated 15 Esrrb-altered mRNAs. DY131 acted as an antagonist for 11 of 15 mRNAs (wdr52, f13a1, pxdn, spns2, loc100506599, tagln, loc441454, tkel1, sema3f, zcwpw2, sdc2) and as an agonist for 4 of the 15 mRNAs (rarres3, oasl, padi2, ddx60). Gene ontology analyses showed altered genes are related to transcription and translation regulation, cell proliferation and apoptosis regulation, and cellular metabolism. CONCLUSION: Our results characterized mRNA profiles in DU145 prostate cancer cells driven by Esrrb expression and Esrrb ligand DY131, and provided multiple markers to characterize Esrrb's function in Esrrb research.


Assuntos
Neoplasias da Próstata/genética , RNA Mensageiro/genética , Receptores de Estrogênio/genética , Apoptose/genética , Sequência de Bases , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Células-Tronco Embrionárias/metabolismo , Metabolismo Energético/genética , Perfilação da Expressão Gênica , Marcadores Genéticos/genética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Análise de Sequência de RNA , Transcrição Gênica/genética
19.
PLoS One ; 10(12): e0145507, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26710108

RESUMO

Sutherlandia frutescens (L) R. Br. (Sutherlandia) is a South African botanical that is traditionally used to treat a variety of health conditions, infections and diseases, including cancer. We hypothesized Sutherlandia might act through Gli/ Hedgehog (Hh)-signaling in prostate cancer cells and used RNA-Seq transcription profiling to profile gene expression in TRAMPC2 murine prostate cancer cells with or without Sutherlandia extracts. We found 50% of Hh-responsive genes can be repressed by Sutherlandia ethanol extract, including the canonical Hh-responsive genes Gli1 and Ptch1 as well as newly distinguished Hh-responsive genes Hsd11b1 and Penk.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Fabaceae/química , Proteínas Hedgehog/metabolismo , Extratos Vegetais/farmacologia , Neoplasias da Próstata/patologia , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Masculino , Transcriptoma/efeitos dos fármacos
20.
BMC Mol Biol ; 16: 19, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26597826

RESUMO

BACKGROUND: Nuclear receptor family member, Estrogen related receptor ß, and the Hedgehog signal transduction pathway are both reported to relate to tumorigenesis and induced pluripotent stem cell reprogramming. We hypothesize that Estrogen related receptor ß can modulate the Hedgehog signaling pathway and affect Hedgehog driven downstream gene expression. RESULTS: We established an estrogen related receptor ß-expressing Hedgehog-responsive NIH3T3 cell line by Esrrb transfection, and performed mRNA profiling using RNA-Seq after Hedgehog ligand conditioned medium treatment. Esrrb expression altered 171 genes, while Hedgehog signaling activation alone altered 339 genes. Additionally, estrogen related receptor ß expression in combination with Hedgehog signaling activation affects a group of 109 Hedgehog responsive mRNAs, including Hsd11b1, Ogn, Smoc2, Igf1, Pdcd4, Igfbp4, Stmn1, Hp, Hoxd8, Top2a, Tubb4b, Sfrp2, Saa3, Prl2c3 and Dpt. CONCLUSIONS: We conclude that Estrogen related receptor ß is capable of interacting with Hh-signaling downstream targets. Our results suggest a new level of regulation of Hedgehog signaling by Estrogen related receptor ß, and indicate modulation of Estrogen related receptor ß can be a new strategy to regulate various functions driven by the Hedgehog signaling pathway.


Assuntos
Proteínas Hedgehog/genética , Receptores de Estrogênio/genética , Transdução de Sinais/genética , Animais , Carcinogênese/patologia , Linhagem Celular , Proliferação de Células , Perfilação da Expressão Gênica , Marcadores Genéticos/genética , Camundongos , Células NIH 3T3 , Células-Tronco Pluripotentes/fisiologia , RNA Mensageiro/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA