Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 472: 134566, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38743973

RESUMO

Three-dimensional separation materials with robust physical/chemical stability have great demand for effective and continuous separation of immiscible oil/water mixtures and water-in-oil emulsions, resulting from chemical leakages and discharge of industrial oily wastewaters. Herein, a superelastic polystyrene-based porous material with superhydrophobicity/superoleophilicity was designed and prepared by high internal phase emulsion polymerization to meet the aforementioned requirements. A flexible and hydrophobic aminopropyl terminated polydimethylsiloxane (NH2-PDMS-NH2) segment was introduced into the rigid styrene-divinylbenzene copolymer through 1, 4-conjugate addition reaction with trimethylolpropane triacrylate. The addition of NH2-PDMS-NH2 simultaneously improved the mechanical and hydrophobic properties of the porous material (the water contact angle from 141.2° to 152.2°). The material exhibited outstanding reversible compressibility (80% strain, even in liquid N2 environments) and superhydrophobic stability, even after being repeatedly compressed 100 times, water contact angle still remained above 150°. Meanwhile, the as-prepared material had outstanding hydrophobic stability in corrosive solutions (strong acidic, alkaline, high-salty, and even strong polar solvent), presence of mechanical interference, strong UV radiations, and high/low temperature environments. More importantly, the material could continuously and efficiently separate immiscible oil/water mixture and water-in-oil emulsions under the above conditions, showing huge potential for the large-scale remediation of complex oily wastewaters.

2.
Colloids Surf B Biointerfaces ; 236: 113772, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394858

RESUMO

Peptides are recognized as highly effective and safe bioactive ingredients. However, t their practical application is limited and hampered by harsh conditions for practical drug delivery. Hence, a novel peptide nanocarrier of copper peptide (GHK-Cu) encapsulation developed by liposome technology combined with the classical Chinese concept of rigidity and flexibility. Different polyols were selected as modification ligands for phospholipid bilayers to construct a nano drug-carrying system with high loading rate, good stability and biocompatibility. In vitro, this complex not only significantly retarded the release ability of copper peptides, but also enabled copper peptides to be effectively resistant to enzymatic degradation. Furthermore, cellular experiments showed that this system mainly regulates Nrf2, SIRT1, and PEG2/COX-2-related signaling pathways, thus effectively counteracting cellular inflammation, senescence, and apoptosis from oxidative damage. Interestingly, a green, non-toxic, efficient and convenient antioxidant system was developed for the prevention and deceleration of skin aging.


Assuntos
Antioxidantes , Cobre , Antioxidantes/farmacologia , Pele , Peptídeos/farmacologia , Anti-Inflamatórios/farmacologia
3.
Mol Neurodegener ; 18(1): 47, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438762

RESUMO

BACKGROUND: Nuclear acetyl-CoA pools govern histone acetylation that controls synaptic plasticity and contributes to cognitive deterioration in patients with Alzheimer's disease (AD). Nuclear acetyl-CoA pools are generated partially from local acetate that is metabolized by acetyl-CoA synthetase 2 (ACSS2). However, the underlying mechanism of histone acetylation dysregulation in AD remains poorly understood. METHODS: We detected ACSS2 expression and histone acetylation levels in the brains of AD patients and 5 × FAD mice. When we altered ACSS2 expression by injecting adeno-associated virus into the dorsal hippocampus of 5 × FAD mice and replenished ACSS2 substrate (acetate), we observed changes in cognitive function by Morris water maze. We next performed RNA-seq, ChIP-qPCR, and electrophysiology to study molecular mechanism underlying ACSS2-mediated spatial learning and memory in 5 × FAD mice. RESULTS: We reported that ACSS2 expression and histone acetylation (H3K9, H4K12) were reduced in the hippocampus and prefrontal cortex of 5 × FAD mice. Reduced ACSS2 levels were also observed in the temporal cortex of AD patients. 5 × FAD mice exhibited a low enrichment of acetylated histones on the promoters of NMDARs and AMPARs, together with impaired basal and activity-dependent synaptic plasticity, all of which were rescued by ACSS2 upregulation. Moreover, acetate replenishment enhanced ac-H3K9 and ac-H4K12 in 5 × FAD mice, leading to an increase of NMDARs and AMPARs and a restoration of synaptic plasticity and cognitive function in an ACSS2-dependent manner. CONCLUSION: ACSS2 is a key molecular switch of cognitive impairment and that targeting ACSS2 or acetate administration may serve as a novel therapeutic strategy for the treatment of intermediate or advanced AD. Nuclear acetyl-CoA pools are generated partly from local acetate that is metabolized by acetyl-CoA synthetase 2 (ACSS2). Model depicts that ACSS2 expression is downregulated in the brains of 5×FAD model mice and AD patients. Of note, ACSS2 downregulation mediates a reduction in ionotropic glutamate receptor expression through histone acetylation, which exacerbates synaptic plasticity impairment in AD. These deficits can be rescued by ACSS2 upregulation or acetate supplementation (GTA, an FDA-approved food additive), which may serve as a promising therapeutic strategy for AD treatment.


Assuntos
Acetato-CoA Ligase , Doença de Alzheimer , Histonas , Animais , Camundongos , Acetilcoenzima A , Acetilação , Cognição , Modelos Animais de Doenças
4.
J Psychopharmacol ; 36(10): 1176-1187, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36069168

RESUMO

BACKGROUND: Intracerebral translocator protein 18 kDa (TSPO) mediates the transport of cholesterol from cytoplasm to mitochondria and activation of microglia. The change of TSPO and the dysfunction of microglia are closely related to the pathogenesis of Alzheimer's disease (AD). AIMS: This study aimed to investigate the effects of microglial TSPO and its selective ligand YL-IPA08 on the cognitive function of transgenic mice in 5 × familial Alzheimer's disease (FAD) mouse model of AD. METHODS: The TSPO knockout 5 × FAD transgenic mice were bred, and tested by Morris water maze. The effects of YL-IPA08 on cognitive abilities and expression of Aß in 5 × FAD mice were also explored into. RESULTS: The latency of escape by TSPO knockout 5 × FAD mice was significantly prolonged compared with the 5 × FAD group, indicating that the cognitive impairment of mice aggravated. With the attenuated phagocytic ability of microglia, the deposition of Aß in prefrontal cortex of TSPO knockout 5 × FAD mice increased, and the expression of proinflammatory factors (IL-1ß, TNF-α, IL-6) were upregulated. In addition, YL-IPA08 significantly reduced the latency of escape by 5 × FAD mice, increased the number of times of crossing over the platform by mice, and inhibited the deposition of Aß in the prefrontal cortex of 5 × FAD mice without affecting the cleavage of APP. CONCLUSION: Our findings suggested that TSPO knockout in 5 × FAD mice inhibited microglial phagocytosis, promoted Aß deposition and neuroinflammation, and aggravated cognitive dysfunction in AD mice. YL-IPA08 had a significant cognition-enhancing effect in 5 × FAD transgenic mice, which might provide a new basis for potential drug candidates in AD treatment.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cognição , Modelos Animais de Doenças , Imidazóis , Interleucina-6/metabolismo , Ligantes , Camundongos Transgênicos , Microglia , Piridinas , Fator de Necrose Tumoral alfa/metabolismo
5.
Front Pharmacol ; 13: 847605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721113

RESUMO

Exportin 1 (XPO1) is an important transport receptor that mediates the nuclear export of various proteins and RNA. KPT-8602 is a second-generation inhibitor of XPO1, demonstrating the lowest level of side effects, and is currently in clinical trials for the treatment of cancers. Previous studies suggest that several first-generation inhibitors of XPO1 demonstrate anti-inflammation activities, indicating the application of this drug in inflammation-related diseases. In this study, our results suggested the potent anti-inflammatory effect of KPT-8602 in vitro and in vivo. KPT-8602 inhibited the activation of the NF-κB pathway by blocking the phosphorylation and degradation of IκBα, and the priming of NLRP3. Importantly, the administration of KPT-8602 attenuated both lipopolysaccharide (LPS)-induced peripheral inflammation and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neuroinflammation in vivo. In addition, the tissue damage was also ameliorated by KPT-8602, indicating that KPT-8602 could be used as a novel potential therapeutic agent for the treatment of inflammasome-related diseases such as Parkinson's disease, through the regulation of the NF-κB signaling pathway and the NLRP3 inflammasome.

6.
Arch Pharm (Weinheim) ; 355(7): e2200052, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35419808

RESUMO

Cancer, as a long-lasting and dramatic disease, affects almost one-third of human beings globally. Chemotherapeutics play an important role in cancer treatment, but multidrug resistance and severe adverse effects have already become the main causes of failure in tumor chemotherapy. Therefore, it is an urgent need to develop novel chemotherapeutics. Cinnamic acid contains a ubiquitous α,ß-unsaturated acid moiety presenting potential therapeutic effects in the treatment of cancer as these derivatives could act on cancer cells by diverse mechanisms of action. Accordingly, cinnamic acid derivatives are critical scaffolds in discovering novel anticancer agents. This review provides a comprehensive overview of cinnamic acid hybrids as anticancer agents. The structure-activity relationship, as well as the mechanisms of action, are also discussed, covering articles published from 2012 to 2021.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cinamatos/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Relação Estrutura-Atividade
7.
Arch Pharm (Weinheim) ; 355(6): e2200051, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35385159

RESUMO

Cancer, characterized by a deregulation of the cell cycle which mainly results in a progressive loss of cellular differentiation and uncontrolled cellular growth, remains a prominent cause of death across the world. Almost all currently available anticancer agents used in clinical practice have developed multidrug resistance, creating an urgent need to develop novel chemotherapeutics. Benzimidazole derivatives could exert anticancer properties through diverse mechanisms, inclusive of the disruption of microtubule polymerization, the induction of apoptosis, cell cycle (G2/M) arrest, antiangiogenesis, and blockage of glucose transport. Moreover, several benzimidazole-based agents have already been approved for the treatment of cancers. Hence, benzimidazole derivatives are useful scaffolds for the development of novel anticancer agents. In particular, benzimidazole hybrids could exert dual or multiple antiproliferative activities and had the potential to overcome drug resistance, demonstrating the potential of benzimidazole hybrids as potential prototypes for clinical deployment in the control and eradication of cancers. The purpose of the present review article is to provide a comprehensive landscape of benzimidazole hybrids as potential anticancer agents, and the structure-activity relationship as well as mechanisms of action are also discussed to facilitate the further rational design of more effective candidates, covering articles published from 2019 to 2021.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzimidazóis/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade
8.
ACS Appl Mater Interfaces ; 13(10): 11948-11957, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33650846

RESUMO

Efficient and safe cleanup for the high-viscosity heavy oil spill has been a worldwide challenge due to its sluggish flowability, while classic absorption methods by electric/solar heating are seriously limited by low efficiency and high fire hazards during heating of highly flammable oil. Facing this dilemma, we reported a novel flame-retardant photothermal conversion nanocoating to endow commercial foams with highly efficient and safe heavy oil cleanup absorption. This multifunctional nanocoating consisting of nano-Fe3O4 and reduced graphene oxide (rGO) that both showed photothermal conversion ability and non-flammable nature can be firmly deposited on the polymer foam skeletons via facile coprecipitation and dip-coating processes. The composite foam showed a tough morphology with high hydrophobicity and low density, thus leading to selective high absorption for various oils and organic solvents. Due to the double photothermal conversion effects of nano-Fe3O4 and rGO, the temperature of the foam can be rapidly heated at a rate of ∼103.5 °C/min (the fastest rate ever) under 1 sun irradiation. Consequently, the foam with a high absorption capacity of 75.1 times its weight demonstrated a rapid absorption rate of 9000 g m-2 min-1 for large-viscosity oil under 1 sun irradiation, which was 3 times faster than previously reported. Furthermore, benefitting from high flame retardancy, elasticity, and magnetism, the foam can be safely and repeatedly used for magnetically controllable oil cleanup absorption, which effectively avoids oil spill hazards.

9.
Acta Pharmacol Sin ; 42(11): 1769-1779, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33627802

RESUMO

NOD-like receptor (NLR) family pyrin domain-containing-3 (NLRP3) inflammasome is implicated in inflammation-associated diseases such as multiple sclerosis, Parkinson's disease, and stroke. Targeting the NLRP3 inflammasome is beneficial to these diseases, but few NLRP3 inflammasome-selective inhibitors are identified to date. Essential oils (EOs) are liquid mixtures of volatile and low molecular-weight organic compounds extracted from aromatic plants, which show various pharmacological activities, including antibacterial, antifungal, antiviral, antioxidant, and anti-inflammatory properties. In this study we screened active ingredients from essential oils, and identified 1,2,4-trimethoxybenzene (1,2,4-TTB) as a selective NLRP3 inflammasome inhibitor. We showed that 1,2,4-TTB (1 mM) markedly suppressed nigericin- or ATP-induced NLRP3 inflammasome activation, thus decreased caspase-1 activation and IL-1ß secretion in immortalized murine bone marrow-derived macrophages (iBMDMs) and in primary mouse microglia. Moreover, 1,2,4-TTB specifically inhibited the activation of NLRP3 inflammasome without affecting absent in melanoma 2 (AIM2) inflammasome activation. We further demonstrated that 1,2,4-TTB inhibited oligomerization of the apoptosis-associated speck-like protein containing a CARD (ASC) and protein-protein interaction between NLRP3 and ASC, thus blocking NLRP3 inflammasome assembly in iBMDMs and in primary mouse macrophages. In mice with experimental autoimmune encephalomyelitis (EAE), administration of 1,2,4-TTB (200 mg · kg-1 · d-1, i.g. for 17 days) significantly ameliorated EAE progression and demyelination. In conclusion, our results demonstrate that 1,2,4-TTB is an NLRP3 inflammasome inhibitor and attenuates the clinical symptom and inflammation of EAE, suggesting that 1,2,4-TTB is a potential candidate compound for treating NLRP3 inflammasome-driven diseases, such as multiple sclerosis.


Assuntos
Derivados de Benzeno/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Derivados de Benzeno/farmacologia , Linhagem Celular Transformada , Feminino , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
J Hazard Mater ; 403: 123977, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33265017

RESUMO

Elastic biomass aerogels have attracted widespread attention but are seriously hindered by environmentally unfriendly cross-linkers and fire hazards for functional applications. This study outlines the fabrication of a fully bio-based, low fire-hazard and superelastic aerogel without any cross-linkers for excellent thermal insulation and oil absorption, via creating highly oriented wave-shaped layer microstructures and subsequently depositing nonflammable siloxane coating on the surface of the aerogel skeleton. The resultant environmental-safety aerogel showed the combined advantages of anisotropic super-elasticity, hydrophobicity, low density and high flame retardancy (limiting oxygen index value of 42%, UL-94 V-0 rating, and extremely low heat release), thus leading to many benefits for solving environmental hazards. For instance, this fire-safety biomass aerogel can be used as the high-performance thermal insulator with low thermal conductivity and high shielding efficiency. The aerogel also exhibited a great selectively oil clean-up absorption with a high absorption capacity of 117 times its own weight and excellent recyclability. Especially, due to the highly oriented microstructures, the aerogel as a filter showed the fastest separation rates of oil/water mixture (flux rate of 145.78 L h-1 g-1) ever reported. Such a method of preparing super-elastic biomass aerogels will provide new insights into their multifunctional applications with high environmental safety.


Assuntos
Condutividade Térmica , Elasticidade , Interações Hidrofóbicas e Hidrofílicas
11.
Front Pharmacol ; 11: 581011, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041826

RESUMO

Activation of the NLRP3 inflammasome results in caspase 1 cleavage, which subsequently leads to IL-1ß and IL-18 secretion, as well as pyroptosis, and aberrant activation of the inflammasome is involved in several diseases such as type 2 diabetes, atherosclerosis, multiple sclerosis, Parkinson's disease, and Alzheimer's disease. NLRP3 activity is regulated by various kinases. Genetic and pharmacological inhibition of the hematopoietic cell kinase (HCK), a member of the Src family of non-receptor tyrosine kinases (NRTKs) primarily expressed in myeloid cells, has previously been shown to ameliorate inflammation, indicating that it may be involved in the regulation of microglia function. However, the underlying mechanism is not known. Hence, in this study, we aimed to investigate the role of HCK in NLRP3 inflammasome activation. We demonstrated that HCK silencing inhibited NLRP3 inflammasome activation. Furthermore, the HCK-specific inhibitor, A419259, attenuated the release of IL-1ß and caspase 1(P20) from the macrophages and microglia and reduced the formation of the apoptosis-associated speck-like protein with a CARD domain (ASC) oligomer. We also observed that HCK binds to full length NLRP3 and its NBD(NACHT) and LRR domains, but not to the PYD domain. In vivo, the HCK inhibitor attenuated the LPS-induced inflammatory response in the liver of LPS-challenged mice. Collectively, these results suggested that HCK plays a critical role in NLRP3 inflammasome activation. Our results will enhance current understanding regarding the effectiveness of HCK inhibitors for treating acute inflammatory diseases.

12.
BMC Med Genet ; 21(1): 84, 2020 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-32306954

RESUMO

BACKGROUND: Nephronophthisis (NPHP) is a rare autosomal recessive inherited disorder with high heterogeneity. The majority of NPHP patients progress to end-stage renal disease (ESRD) within the first three decades of life. As an inherited disorder with highly genetic heterogeneity and clinical presentations, NPHP still poses a challenging task for nephrologists without special training to make a well-judged decision on its precise diagnosis, let alone its mechanism and optimal therapy. CASE PRESENTATION: A Chinese family with NPHP was recruited in current study. The clinical characteristics (including findings from renal biopsy) of NPHP patients were collected from medical records and the potential responsible genes were explored by the whole exome sequencing (WES). A homozygous deletion of NPHP1 (1-20 exons) was found in both affected patients, which was further confirmed by quantitative PCR. CONCLUSIONS: Homozygous full gene deletion of the NPHP1 gene was identified in a Chinese family with NPHP, which was the molecular pathogenic basis of this disorder. Furthermore, identification of the pathogenic genes for those affected patients can help to have a full knowledge on NPHP's molecular mechanism and precise treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/genética , Predisposição Genética para Doença , Doenças Renais Císticas/congênito , Falência Renal Crônica/genética , Adulto , Éxons/genética , Feminino , Deleção de Genes , Homozigoto , Humanos , Doenças Renais Císticas/genética , Doenças Renais Císticas/fisiopatologia , Falência Renal Crônica/fisiopatologia , Masculino , Linhagem , Deleção de Sequência/genética , Sequenciamento do Exoma
13.
Front Immunol ; 11: 281, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140159

RESUMO

The Hippo signaling pathway, an evolutionarily conserved protein kinase cascade, plays a critical role in controlling organ size, cancer development, and tissue regeneration. Recently, mounting evidence has suggested that Hippo signaling also has an important role in regulating immunity, including innate and adaptive immune activation. In the neuronal system, Our laboratory results, together with those from other studies, demonstrate that the Hippo signaling pathway is involved in neuroinflammation, neuronal cell differentiation, and neuronal death. In the present review, we summarize the recent findings pertaining to the function and regulatory mechanism of Hippo signaling components in the neuronal system, implicating the potential of Hippo signaling as a therapeutic target for the treatment of neuronal system diseases.


Assuntos
Neurônios/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Morte Celular , Via de Sinalização Hippo , Humanos , Inflamação/etiologia , Doenças do Sistema Nervoso/etiologia , Células-Tronco Neurais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
14.
Autophagy ; 16(12): 2193-2205, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32003282

RESUMO

Microglial activation-induced neuroinflammation is closely associated with the development of Parkinson disease (PD). Macroautophagy/autophagy regulates many biological processes, but the role of autophagy in microglial activation during PD development remains largely unclear. In this study, we showed that deletion of microglial Atg5 caused PD-like symptoms in mice, characterized by impairment in motor coordination and cognitive learning, loss of tyrosine hydroxylase (TH) neurons, enhancement of neuroinflammation and reduction in dopamine levels in the striatum. Mechanistically, we found that inhibition of autophagy led to NLRP3 (NLR family pyrin domain containing 3) inflammasome activation via PDE10A (phosphodiesterase 10A)-cyclic adenosine monophosphate (cAMP) signaling in microglia, and the sequential upregulation of downstream IL1B/IL-1ß in turn increased the expression of MIF (macrophage migration inhibitory factor [glycosylation-inhibiting factor]), a pro-inflammatory cytokine. Inhibition of NLRP3 inflammasome activation by administration of MCC950, a specific inhibitor for NLRP3, decreased MIF expression and neuroinflammatory levels, and rescued the loss of TH neurons in the substantial nigra (SN). Interestingly, we found that serum MIF levels in PD patients were significantly elevated. Taken together, our results reveal an important role of autophagy in microglial activation-driven PD-like symptoms, thus providing potential targets for the clinical treatment of PD. Abbreviations: ATG: autophagy related; cAMP: cyclic adenosine monophosphate; cKO: conditional knockout; NOS2/INOS: nitric oxide synthase 2, inducible; IL1B: interleukin 1 beta; ITGAM/CD-11b: integrin alpha M/cluster of differentiation molecule 11B; MAP1LC3: microtubule-associated protein 1 light chain 3; MIF: macrophage migration inhibitory factor (glycosylation-inhibiting factor); NLRP3: NLR family pyrin domain containing 3; PBS: phosphate-buffered saline; PD: parkinson disease; PDE10A: phosphodiesterase 10A; SN: substantial nigra; TH: tyrosine hydroxylase; TNF: tumor necrosis factor; WT: wild type.


Assuntos
Autofagia , Inflamassomos/metabolismo , Microglia/metabolismo , Microglia/patologia , Doença de Parkinson/patologia , Animais , Proteína 5 Relacionada à Autofagia/metabolismo , Encéfalo/patologia , Cognição , Deleção de Genes , Humanos , Inflamação/patologia , Integrases/metabolismo , Oxirredutases Intramoleculares/sangue , Aprendizagem , Fatores Inibidores da Migração de Macrófagos/sangue , Camundongos , Atividade Motora , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/sangue , Doença de Parkinson/fisiopatologia , Diester Fosfórico Hidrolases/metabolismo , Substância Negra/metabolismo
15.
Cell Death Dis ; 8(10): e3117, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29022905

RESUMO

Oxidative stress-induced mitochondrial dysfunction and neuronal cell death have important roles in the development of neurodegenerative diseases. Dynamin related protein 1 (Drp1) is a critical factor in regulating mitochondrial dynamics. A variety of posttranslational modifications of Drp1 have been reported, including phosphorylation, ubiquitination, sumoylation and S-nitrosylation. In this study, we found that c-Abl phosphorylated Drp1 at tyrosine 266, 368 and 449 in vitro and in vivo, which augmented the GTPase activity of Drp1 and promoted Drp1-mediated mitochondrial fragmentation. Consistently, c-Abl-mediated phosphorylation is important for GTPase activity of Drp1 and mitochondrial fragmentation. Furthermore, we found that Drp1 phosphorylation mediated by c-Abl is required for oxidative stress-induced cell death in primary cortical neurons. Taken together, our findings reveal that c-Abl-Drp1 signaling pathway regulates oxidative stress-induced mitochondrial fragmentation and cell death, which might be a potential target for the treatment of neurodegenerative diseases.


Assuntos
Morte Celular/fisiologia , Dinaminas/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/fisiologia , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Animais , Linhagem Celular , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrogênio/farmacologia , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Fosforilação
16.
J Exp Med ; 214(11): 3219-3238, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29021150

RESUMO

The NLRP3 inflammasome has been implicated in the pathogenesis of a wide variety of human diseases. A few compounds have been developed to inhibit NLRP3 inflammasome activation, but compounds directly and specifically targeting NLRP3 are still not available, so it is unclear whether NLRP3 itself can be targeted to prevent or treat diseases. Here we show that the compound CY-09 specifically blocks NLRP3 inflammasome activation. CY-09 directly binds to the ATP-binding motif of NLRP3 NACHT domain and inhibits NLRP3 ATPase activity, resulting in the suppression of NLRP3 inflammasome assembly and activation. Importantly, treatment with CY-09 shows remarkable therapeutic effects on mouse models of cryopyrin-associated autoinflammatory syndrome (CAPS) and type 2 diabetes. Furthermore, CY-09 is active ex vivo for monocytes from healthy individuals or synovial fluid cells from patients with gout. Thus, our results provide a selective and direct small-molecule inhibitor for NLRP3 and indicate that NLRP3 can be targeted in vivo to combat NLRP3-driven diseases.


Assuntos
Inflamassomos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Tiazolidinas/farmacologia , Tionas/farmacologia , Adulto , Animais , Linhagem Celular Tumoral , Síndromes Periódicas Associadas à Criopirina/tratamento farmacológico , Síndromes Periódicas Associadas à Criopirina/genética , Síndromes Periódicas Associadas à Criopirina/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Células HEK293 , Humanos , Immunoblotting , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Estrutura Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Bibliotecas de Moléculas Pequenas/química , Tiazolidinas/química , Tionas/química
17.
Food Nutr Res ; 61(1): 1330096, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659738

RESUMO

Background: Rosmarinic acid (RA) is a natural phenol carboxylic acid with many promising biological effects. It may be a suitable candidate for improving obesity-related adipose tissue dysfunction. Objective: We aimed to investigate the therapeutic use of RA as an anti-obesity agent by measuring its effects on adipogenesis, lipolysis, and messenger RNA (mRNA) expression of major adipokines in 3T3-L1 adipocytes; and its effects on lipopolysaccharide (LPS)-induced tumor necrosis factor-α (TNF-α) secretion in macrophages and inflammatory mediators in 3T3-L1 adipocytes incubated with macrophage-conditioned medium (MCM). Methods: 3T3-L1 preadipocytes were used to explore how RA affects adipogenesis, as well as the involvement of phosphorylated extracellular signal-regulated kinase-1/2 (p-ERK1/2) and mothers against decapentaplegic homolog 3 (p-Smad3). 3T3-L1 preadipocytes were also differentiated into mature adipocytes to explore how RA affects basal and isoproterenol- and forskolin-stimulated lipolysis; and how RA affects key adipokines' mRNA expression. RAW 264.7 macrophages were stimulated with LPS in the absence or presence of RA to explore RA's effects on TNF-α secretion. MCM was collected and 3T3-L1 adipocytes were incubated with MCM to explore RA's effects on interleukin-6 (IL-6), IL-1ß, monocyte chemoattractant protein-1 (MCP-1), and RANTES mRNA expression. Results: During the preadipocyte differentiation process, RA suppressed peroxisome proliferator-activated receptor-γ and CCAAT/enhancer binding protein-α, and activated p-ERK1/2 and p-Smad3; inhibition of adipogenesis by RA was partially restored following treatment with p-ERK1/2 and p-Smad3 inhibitors. In mature adipocytes, RA inhibited basal lipolysis; phosphodiesterase-3 inhibitor reversed this. RA also inhibited isoproterenol- and forskolin-stimulated glycerol and free fatty acid release, and the phosphorylation of hormone-sensitive lipase and perilipin. RA had no effects on leptin, adiponectin, resistin, or visfatin mRNA expression. RA suppressed TNF-α mRNA expression and secretion in LPS-stimulated RAW 264.7 macrophages; and reduced LPS-MCM-induced IL-6, IL-1ß, MCP-1, and RANTES mRNA expression in 3T3-L1 adipocytes. Conclusions: RA exerts inhibitory effects on adipogenesis, lipolysis, and inflammation. RA could be a promising natural product for improving adipose mobilization in obesity.

18.
Cell Death Differ ; 24(2): 276-287, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28141795

RESUMO

Mitochondrial antiviral signaling (MAVS) protein has an important role in antiviral immunity and autoimmunity. However, the pathophysiological role of this signaling pathway, especially in the brain, remains elusive. Here we demonstrated that MAVS signaling existed and mediated poly(I:C)-induced inflammation in the brain. Along with the MAVS signaling activation, there was an induction of autophagic activation. Autophagy negatively regulated the activity of MAVS through direct binding of LC3 to the LIR motif Y(9)xxI(12) of MAVS. We also found that c-Abl kinase phosphorylated MAVS and regulated its interaction with LC3. Interestingly, tyrosine phosphorylation of MAVS was required for downstream signaling activation. Importantly, in vivo data showed that the deficiency of MAVS or c-Abl prevented MPTP-induced microglial activation and dopaminergic neuron loss. Together, our findings reveal the molecular mechanisms underlying the regulation of MAVS-dependent microglial activation in the nervous system, thus providing a potential target for the treatment of microglia-driven inflammatory brain diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Células HEK293 , Humanos , Inflamação/induzido quimicamente , Intoxicação por MPTP , Masculino , Camundongos , Camundongos Knockout , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação/efeitos dos fármacos , Poli I-C/farmacologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
19.
Int J Mol Sci ; 18(2)2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28208618

RESUMO

The mitochondrial calcium uniporter (MCU)-a calcium uniporter on the inner membrane of mitochondria-controls the mitochondrial calcium uptake in normal and abnormal situations. Mitochondrial calcium is essential for the production of adenosine triphosphate (ATP); however, excessive calcium will induce mitochondrial dysfunction. Calcium homeostasis disruption and mitochondrial dysfunction is observed in many neurodegenerative disorders. However, the role and regulatory mechanism of the MCU in the development of these diseases are obscure. In this review, we summarize the role of the MCU in controlling oxidative stress-elevated mitochondrial calcium and its function in neurodegenerative disorders. Inhibition of the MCU signaling pathway might be a new target for the treatment of neurodegenerative disorders.


Assuntos
Canais de Cálcio/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Transporte Biológico , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Sinalização do Cálcio , Humanos , Inflamação/metabolismo , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/patologia , Mitocôndrias/efeitos dos fármacos , Terapia de Alvo Molecular , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
20.
Biochem Biophys Res Commun ; 492(4): 624-630, 2017 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27866982

RESUMO

Recent outbreak of flavivirus Zika virus (ZIKV) in America has urged the basic as well as translational studies of this important human pathogen. The nonstructural protein 5 (NS5) of the flavivirus has an N-terminal methyltransferase (MTase) domain that plays critical roles in viral RNA genome capping. The null mutant of NS5 MTase is lethal for virus. Therefore, NS5 is a potential drug target for the treatment of Zika virus infection. In this study, we determined crystal structures of the ZIKV MTase in complex with GTP and RNA cap analogue 7meGpppA. Structural analyses revealed highly conserved GTP/cap-binding pocket and S-adenosylmethionine (SAM)-binding pocket. Two conformations of the second base of the cap were identified, which suggests the flexibility of RNA conformation. In addition, the ligand-binding pockets identified a continuous region of hotspots suitable for drug design. Docking calculation shows that the Dengue virus inhibitor compound 10 may bind to the ZIKV MTase.


Assuntos
Inibidores Enzimáticos/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/ultraestrutura , Zika virus/enzimologia , Sítios de Ligação , Desenho de Fármacos , Ligação Proteica , Conformação Proteica , Proteínas não Estruturais Virais/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA