Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Oncol ; 41(6): 151, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743149

RESUMO

Prostate cancer (PCa) is the second most common cancer and the fifth leading cause of cancer-related death among men. A comprehensive understanding of PCa progression is crucial for the development of innovative therapeutic strategies for its treatment. While WDR1 (WD-repeat domain 1) serves as a significant cofactor of actin-depolymerizing factor/cofilin, its role in PCa progression remains unknown. In this study, we demonstrated that knockdown of WDR1 in various PCa cells substantially inhibited cell proliferation, migration, and invasion in vitro, as confirmed at both the cellular and molecular levels. Moreover, the overexpression of WDR1 promoted PCa cell proliferation and metastasis in vitro. Mechanistically, we showed that the application of lithium chloride, an activator of the Wnt/ß-Catenin signaling pathway, restored the suppressive effects of WDR1 deficiency on cell proliferation and migration in PCa cells. Our findings suggest that the WDR1-ß-Catenin axis functions as an activator of the malignant phenotype and represents a promising therapeutic target for PCa treatment.


Assuntos
Movimento Celular , Proliferação de Células , Progressão da Doença , Neoplasias da Próstata , Via de Sinalização Wnt , Humanos , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Via de Sinalização Wnt/fisiologia , Movimento Celular/genética , Linhagem Celular Tumoral , beta Catenina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
3.
Springerplus ; 5(1): 1290, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27652004

RESUMO

The objective of the present work was to evaluate the effect of exogenously applied cadmium on the physiological response of green algae Chlorella vulgaris. The study investigated the long-term effect (18 days) of cadmium on the levels of algae biomass, assimilation pigment composition, soluble protein, oxidative status (production of hydrogen peroxide and superoxide anion), antioxidant enzymes (such as superoxide dismutase, peroxidase, catalase and glutathione reductase enzyme) in C. vulgaris. The results showed that growth, the amount of chlorophyll a (Chl a), chlorophyll b (Chl b) and carotenoids gradually decreased with increasing cadmium over 18 days exposure. Cadmium at concentration of 7 mg L(-1) inhibited algal growth expressed as the number of cells. Our research found that C. vulgaris has a high tolerance to cadmium. Contents of chlorophylls (Chl a and Chl b) and carotenoids (Car) of C. vulgaris was significantly decline with rising concentration of cadmium (p < 0.05). The decrease of 54.04 and 93.37 % in Chl a, 60.65 and 74.32 % in Chl b, 50.00 and 71.88 % in total carotenoids was noticed following the treatment with 3 and 7 mg L(-1) cadmium doses compared with control treatment, respectively. Cadmium treatments caused a significant change in the physiological competence (calculated as chlorophyll a/b) which increased with increasing Cd(II) doses up to 1 mg L(-1) but decreased at 3 mg L(-1). While accumulation of soluble protein was enhanced by presence of cadmium, the treatment with cadmium at 3 and 7 mg L(-1) increased the concentration of soluble proteins by 88, 95.8 % in C. vulgaris, respectively. Moreover, low doses of cadmium stimulated enzymatic (superoxide dismutase, catalase and glutathione reductase) in C. vulgaris, The content of peroxidase increased with the increasing cadmium concentration, and had slightly decreased at the concentration of 7 mg L(-1), but was still higher than control group, which showed that cadmium stress at high concentration mainly peroxidase works in C. vulgaris. And therefore, suppressed reactive oxygen species (hydrogen peroxide and superoxide) accumulated. The present study also showed that cadmium increased oxidative stress and induced antioxidant defense systems against reactive oxygen species. The observation in here analyzed C. vulgaris after exposure to cadmium indicate that hydrogen peroxide, superoxide and peroxidase in the alga with exposure to Cd(II) seemed to be parameters as biomarkers for metal-induced oxidative stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA