Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 23(2): 478-488, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27535982

RESUMO

PURPOSE: The majority of tumor-specific antigens are intracellular and/or secreted and therefore inaccessible by conventional chimeric antigen receptor (CAR) T-cell therapy. Given that all intracellular/secreted proteins are processed into peptides and presented by class I MHC on the surface of tumor cells, we used alpha-fetoprotein (AFP), a specific liver cancer marker, as an example to determine whether peptide-MHC complexes can be targets for CAR T-cell therapy against solid tumors. EXPERIMENTAL DESIGN: We generated a fully human chimeric antigen receptor, ET1402L1-CAR (AFP-CAR), with exquisite selectivity and specificity for the AFP158-166 peptide complexed with human leukocyte antigen (HLA)-A*02:01. RESULTS: We report that T cells expressing AFP-CAR selectively degranulated, released cytokines, and lysed liver cancer cells that were HLA-A*02:01+/AFP+ while sparing cells from multiple tissue types that were negative for either expressed proteins. In vivo, intratumoral injection of AFP-CAR T cells significantly regressed both Hep G2 and AFP158-expressing SK-HEP-1 tumors in SCID-Beige mice (n = 8 for each). Moreover, intravenous administration of AFP-CAR T cells in Hep G2 tumor-bearing NSG mice lead to rapid and profound tumor growth inhibition (n = 6). Finally, in an established intraperitoneal liver cancer xenograft model, AFP-CAR T cells showed robust antitumor activity (n = 6). CONCLUSIONS: This study demonstrates that CAR T-cell immunotherapy targeting intracellular/secreted solid tumor antigens can elicit a potent antitumor response. Our approach expands the spectrum of antigens available for redirected T-cell therapy against solid malignancies and offers a promising new avenue for liver cancer immunotherapy. Clin Cancer Res; 23(2); 478-88. ©2016 AACR.


Assuntos
Imunoterapia , Neoplasias Hepáticas/terapia , Receptores de Antígenos de Linfócitos T/imunologia , alfa-Fetoproteínas/imunologia , Animais , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/imunologia , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Camundongos , Terapia de Alvo Molecular , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T Citotóxicos/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , alfa-Fetoproteínas/antagonistas & inibidores , alfa-Fetoproteínas/genética
2.
J Mol Biol ; 428(1): 194-205, 2016 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-26688548

RESUMO

Antibody therapies currently target only extracellular antigens. A strategy to recognize intracellular antigens is to target peptides presented by immune HLA receptors. ESK1 is a human, T-cell receptor (TCR)-mimic antibody that binds with subnanomolar affinity to the RMF peptide from the intracellular Wilms tumor oncoprotein WT1 in complex with HLA-A*02:01. ESK1 is therapeutically effective in mouse models of WT1(+) human cancers. TCR-based therapies have been presumed to be restricted to one HLA subtype. The mechanism for the specificity and high affinity of ESK1 is unknown. We show in a crystal structure that ESK1 Fab binds to RMF/HLA-A*02:01 in a mode different from that of TCRs. From the structure, we predict and then experimentally confirm high-affinity binding with multiple other HLA-A*02 subtypes, broadening the potential patient pool for ESK1 therapy. Using the crystal structure, we also predict potential off-target binding that we experimentally confirm. Our results demonstrate how protein structure information can contribute to personalized immunotherapy.


Assuntos
Anticorpos/metabolismo , Antineoplásicos/metabolismo , Antígeno HLA-A2/genética , Antígeno HLA-A2/metabolismo , Proteínas WT1/metabolismo , Animais , Anticorpos/química , Antineoplásicos/química , Cristalografia por Raios X , Antígeno HLA-A2/química , Humanos , Camundongos , Modelos Moleculares , Farmacogenética , Ligação Proteica , Conformação Proteica , Proteínas WT1/química
3.
J Phys Chem B ; 111(40): 11622-5, 2007 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-17854220

RESUMO

Here we wish to demonstrate a unique property of nanomaterials: energy deposition with nanometer precision from low-energy electrons released from these nanostructures interacting with hard X-ray radiation in aqueous solution. Three effects combine to cause this phenomenon: (1) localized absorption of X-rays by nanostructures, (2) effective release of low-energy electrons from small nanostructures, and (3) efficient deposition of energy in water in the form of radicals and electrons. This combination creates localized X-ray absorption and localized energy deposition of nanometer precision. We confirmed the theoretically predicted nanoscale energy deposition distribution by measuring hydroxyl radical-induced DNA strand breaks, and observed enhanced damage to a 5600-bp DNA molecule from approximately 10 chemically conjugated small gold nanoparticles under X-ray radiation. These results provide a general guidance to applications of this new concept in many fields including radiation chemistry, radiology, radiation oncology, biochemistry, biology, and nanotechnology.

4.
J Phys Chem B ; 110(7): 3410-9, 2006 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-16494355

RESUMO

The structural characteristics of alpha-helices in poly-alanine-based peptides have been investigated via molecular dynamics simulation with the goal of understanding the basic features of peptide simulations within the context of a model system, classical molecular dynamics with generalized Born (GB) solvation, and to shed insight into the formation and stabilization of alpha-helices in short peptides. The effects of peptide length, terminal charges, proline substitution, and temperature on the alpha-helical secondary structure have been studied. The simulations have shown that distinct secondary structure begins to develop in peptides with lengths approaching 10 residues while ambiguous structures occur in shorter peptides. The helical content of peptides with lengths > or =10 amino acids is observed to be nearly constant up to (Ala)(40). Interestingly, terminal charges and proline in the second position from the N-terminus alter the secondary structure locally with little effect on the overall alpha-helical content of the peptide. The free energy profile of helix formation was also investigated. A large increase in free energy accompanying the formation of helices with more than two consecutive hydrogen bonds in the (i, i + 4) pattern was observed while the free energy increases linearly with additional hydrogen bonds. Values for the change in enthalpy and entropy of helix nucleation and propagation are reported. Additionally the results obtained from the GB model are compared to explicit solvent simulations of two synthetic alanine-based peptides.


Assuntos
Físico-Química/métodos , Peptídeos/química , Entropia , Temperatura Alta , Modelos Químicos , Modelos Estatísticos , Modelos Teóricos , Probabilidade , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Solventes , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA