Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Neurosci Lett ; 791: 136933, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36283628

RESUMO

Pain is a major non-motor symptom that contributes to impaired quality of life in Parkinson's disease (PD). However, the mechanisms and treatment of pain in PD have not been well studied. Dexmedetomidine (Dex) is used for analgesia and sedation during deep brain stimulation (DBS) and may reverse the progression of PD. Here, we explored the effect of Dex on Parkinson's pain and the underlying mechanism. C57BL/6 mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg) to establish a PD model. Then, the mice were treated with Dex (50 µg/kg) or Compound C (CC, 10 mg/kg, AMPK inhibitor). A motor behavioral test was used to validate the PD model, and a plantar test was conducted to assess mechanical and thermal stimulation thresholds. Immunofluorescence and western blotting were used to analyze the level of tyrosine hydroxylase (TH) in the substantia nigra (SN) and the expression of c-Fos, GFAP, p-AMPK, mTOR, NF-κB, TNFα, and IL-6 in the dorsal horn of the spinal cord (DHSC). We found that mice exhibited motor dysfunction and mechanical allodynia and thermal hyperalgesia after MPTP injection, and these changes were partially reversed by Dex. Dex also reduced MPTP-induced astrocyte activation and TNFα and IL-6 expression, increased p-AMPK and reduced mTOR and NF-κB expression in DHSC. Moreover, the effects of Dex were partially reversed by the AMPK inhibitor Compound C. Conclusions: These findings reveal that Dex protects dopaminergic neurons in PD and alleviates pain by reducing the activation of DHSC astrocytes through the AMPK/mTOR/NF-κB pathway. Therefore, Dex may be a potential drug for treating Parkinson's pain.


Assuntos
Dexmedetomidina , Doença de Parkinson , Camundongos , Animais , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Astrócitos/metabolismo , NF-kappa B/metabolismo , Doença de Parkinson/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Camundongos Endogâmicos C57BL , Interleucina-6/metabolismo , Qualidade de Vida , Neurônios Dopaminérgicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Modelos Animais de Doenças
3.
Ther Adv Chronic Dis ; 12: 2040622321998139, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796244

RESUMO

BACKGROUND: Human bone marrow mesenchymal stem cells (hBMSCs) could differentiate into dopamine-producing cells and ameliorate behavioral deficits in Parkinson's disease (PD) models. Liver X receptors (LXRs) are involved in the maintenance of the normal function of central nervous system myelin. Therefore, the previous work of our team has found the induction of cocktail-induced to dopaminergic (DA) phenotypes from adult rat BMSCs by using sonic hedgehog (SHH), fibroblast growth factor 8 (FGF8), basic fibroblast growth factor (bFGF), and TO901317 (an agonist of LXRs) with 87.42% of efficiency in a 6-day induction period. But we did not verify whether the induced cells had the corresponding neural function. METHODS: Expressions of LXRα, LXRß, and tyrosine hydroxylase (TH) were detected by immunofluorescence and western blot. Adenosine triphosphate-binding cassette transporter A1 (ABCA1) was detected by quantitative real-time PCR. The induced cells were transplanted into PD rats to study whether the induced cells are working. RESULTS: The induced cells can release the dopamine transmitter; the maximum induction efficiency of differentiation of hBMSCs into DA neurons was 91.67% under conditions of combined use with TO901317 and growth factors (GF). When the induced-cells were transplanted into PD rats, the expression of TH in the striatum increased significantly, and the behavior of PD rats induced by apomorphine was significantly improved. CONCLUSION: The induced cells have the function of DA neurons and have the potential to treat PD. TO901317 promoted differentiation of hBMSCs into DA neurons, which may be related to activation of the LXR-ABCA1 signaling pathway.

4.
Eur J Neurosci ; 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33905578

RESUMO

Dexmedetomidine (Dex), an adrenergic α2 receptor agonist, is commonly used in deep-brain stimulation surgery for Parkinson's disease (PD). However, there is evidence that the use of anaesthetics may accelerate the progression of neurodegenerative diseases. The effect of Dex on PD remains unclear. Here, we cultured the all-trans-retinoicacid (ATRA) differentiated SH-SY5Y cells in vitro and then treated with MPP+ (1.5mM) with or without Dex (10nM) or Dex combined with Atipamezole (Ati,100nM, adrenergic α2 receptor inhibitor). The ratio of apoptotic cells, mitochondrial membrane potential (Δψm), reactive oxygen species (ROS), cell cycle and apoptotic markers (Cleaved caspase-3, 9) were analysed by flow cytometry and immunofluorescence. We found that the levels of apoptotic ratio and cleaved caspase-3, 9 increased, ROS accumulated, and mitochondrial membrane potential decreased after MPP+treatment, while these changes were partially reversed by Dex. Dex also prevented MPP+ induced cell arrest by increasing G1 phase cells, decreasing S phase cells, and decreasing the expression of cyclinD1 and Cdk4. Moreover the effects of Dex were partially reversed by Ati. These findings reveal that Dex attenuated MPP+ -induced apoptosis of SH-SY5Y cells by preventing the loss of Δψm, reducing ROS, and regulating the cell cycle. Our findings indicated that Dex is more likely to be a potential drug for the treatment of PD.

5.
Exp Cell Res ; 382(1): 111455, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31163124

RESUMO

Diabetic nephropathy (DN) is one of the most severe complications of diabetes mellitus. The pathomolecular events behind DN remain uncertain. Peroxisome proliferator-activated receptors (PPARs) play essential functions in the development of DN. Meanwhile, 20-hydroxyeicosatetraenoic acid (20-HETE) also plays central roles in the regulation of renal function. However, the relationship between PPARs and 20-HETE is rarely studied in DN. It was revealed in our study that both PPARs expression and CYP4A-20-HETE level were decreased under DN conditions in vivo and in vitro. Supplementation with bezafibrate, a PPAR pan-agonist, improved the damage of kidney in DN mice and in high glucose-induced NRK-52E cells, following the up-regulation of PPARs and the increase of CYP4A-20-HETE. PPARα antagonist (MK886), PPARß antagonist (GSK0660), and PPARγ antagonist (GW9662) reversed the protection of bezafibrate in NRK-52E, and abrogated the up-regulation of CYP4A-20-HETE produced by bezafibrate. Noteworthily, 20-HETE synthetase inhibitor, HET0016, also blocked the bezafibrate-mediated improvement of NRK-52E, and abolished the up-regulation of PPARs expression. Collectively, our data suggest that the concurrent down-regulation and interaction of PPARs and 20-HETE play crucial roles in the pathogenesis process of DN, and we provide a novel evidence that PPARs/20-HETE signaling may be served as a therapeutic target for DN patients.


Assuntos
Nefropatias Diabéticas/metabolismo , Ácidos Hidroxieicosatetraenoicos/fisiologia , PPAR alfa/fisiologia , PPAR gama/fisiologia , PPAR beta/fisiologia , Amidinas/farmacologia , Anilidas/farmacologia , Animais , Linhagem Celular , Citocromo P-450 CYP4A/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Regulação para Baixo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/toxicidade , Ácidos Hidroxieicosatetraenoicos/biossíntese , Indóis/farmacologia , Túbulos Renais/citologia , Masculino , Camundongos , PPAR alfa/biossíntese , PPAR alfa/genética , PPAR gama/biossíntese , PPAR gama/genética , PPAR beta/biossíntese , PPAR beta/genética , Ratos , Sulfonas/farmacologia , Tiofenos/farmacologia
6.
Neural Regen Res ; 13(8): 1375-1383, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30106049

RESUMO

Genistein, a potent antioxidant compound, protects dopaminergic neurons in a mouse model of Parkinson's disease. However, the mechanism underlying this action remains unknown. This study investigated human SH-SY5Y cells overexpressing the A53T mutant of α-synuclein. Four groups of cells were assayed: a control group (without any treatment), a genistein group (incubated with 20 µM genistein), a rotenone group (treated with 50 µM rotenone), and a rotenone + genistein group (incubated with 20 µM genistein and then treated with 50 µM rotenone). A lactate dehydrogenase release test confirmed the protective effect of genistein, and genistein remarkably reversed mitochondrial oxidative injury caused by rotenone. Western blot assays showed that BCL-2 and Beclin 1 levels were markedly higher in the genistein group than in the rotenone group. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling revealed that genistein inhibited rotenone-induced apoptosis in SH-SY5Y cells. Compared with the control group, the expression of NFE2L2 and HMOX1 was significantly increased in the genistein + rotenone group. However, after treatment with estrogen receptor and NFE2L2 channel blockers (ICI-182780 and ML385, respectively), genistein could not elevate NFE2L2 and HMOX1 expression. ICI-182780 effectively prevented genistein-mediated phosphorylation of NFE2L2 and remarkably suppressed phosphorylation of AKT, a protein downstream of the estrogen receptor. These findings confirm that genistein has neuroprotective effects in a cell model of Parkinson's disease. Genistein can reduce oxidative stress damage and cell apoptosis by activating estrogen receptors and NFE2L2 channels.

7.
Oncotarget ; 9(1): 576-590, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29416637

RESUMO

Dopaminergic (DA) neurons derived from bone marrow derived mesenchymal stem cells (BMSCs) maybe a valuable source for cell replacement therapy in Parkinson disease. Recent studies showed that new functions of LXR and their ligands have been proposed to prevent PD in the adult nervous system. The present study was designed to observe the effect of liver X receptors (LXR) agonist on differentiation of rat BMSCs into DA neurons. Expressions of the neuronal markers (Tuj1 and Nestin), the specific marker of DA neurons (tyrosine hydroxylase, TH), LXR α and LXR ß were measured by immunocytochemical assay and TH/Tuj1 positive cells were determined by quantitative cell count analyses. mRNA expressions of LXR α, LXR ß, TH, DAT, Nurr1, Pitx3, En1 and Lmx1b were measured by qPCR. Compared with growth factors (GF) treated group, combined use of LXR and GF induced rat BMSCs to TH-expressing cells with 87.42% of efficiency in 6 days of period of induction. LXR agonist alone did not induce the differentiation. Compared with GF alone, combined use of LXR and GF increased expressions of LXR α and LXR ß protein and mRNA and TH, DAT, Nurr1, and Pitx3 mRNA, decreased expressions of En1 and Lmx1b mRNA. Our experimental results indicated that LXR activation leads to improve induction efficiency and shorten induction period of rat BMSCs into DA neuron-like cells through regulating DA development-related genes expressions and that LXR can be considered as a candidate target for drug development to improve differentiation of BMSCs into DA neurons.

8.
Neural Regen Res ; 7(4): 268-72, 2012 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25806067

RESUMO

An animal model of cortical dysplasia was established through X-ray irradiation induced subcortical heterotopic nodules in rats. Transmission electron microscopy detection of the ultrastructure and the stereology examination showed that there was a significant decrease in cerebral white matter and hippocampal volume, the total volume, volume density, length density and total length of the myelinated fibers in the white matter of cortical dysplasia rats. Subcortical heterotopic nodules of the hippocampal CA1 region and synaptic number density in the CA3 region were reduced compared with normal rats. Our experimental findings indicate that erosed subcortical heterotopic nodules, decreased total length of myelinated nerve fibers and demyelination directly lead to a reduction of white matter volume.

9.
Transl Stroke Res ; 1(1): 57-64, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20596246

RESUMO

Among many proinflammatory cytokines, interleukin-1ß (IL-1ß) is considered a key mediator of neuronal injury. However, in order to become activated, it must be processed and cleaved by a caspase-1 enzyme. In this study, we tested the neuroprotective effect of Ac-YVAD-CMK, a known selective caspase-1 inhibitor, in a mouse model of intracerebral hemorrhage (ICH). Sixty-six adult male CD-1 mice were subjected to collagenase-induced ICH. Ac-YVAD-CMK or vehicle was administered into the left lateral ventricle 20 min before ICH modeling. Brain edema and neurological functions were assessed at 24 and 72 h after the surgery. Expression of IL-1ß, phosphorylated JNK, tight junction protein zona occludens 1 (ZO-1), and matrix metalloproteinase-9 (MMP-9) were measured by Western blot along with MMP-9 activity measured by zymography at 24 h after ICH. At 24 h after ICH, Ac-YVAD-CMK treatment significantly reduced brain edema and improved neurological functions. The neuroprotection was associated with downregulation of IL-1ß, JNK, MMP-9, and an inhibition of ZO-1 degradation in brain. We conclude that Ac-YVAD-CMK protects the brain against ICH-induced injury, and the neuroprotective effect may result from anti-inflammation-induced blood-brain barrier protection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA