Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2408685, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129656

RESUMO

Manufacturing whole cancer cell vaccines (WCCV) with both biosafety and efficacy is crucial for tumor immunotherapy. Pyroptotic cancer cells, due to their highly immunogenic properties, present a promising avenue for the development of WCCV. However, the successful development of WCCV based on pyroptotic cancer cells is yet to be accomplished. Here, a facile strategy that utilized photocatalytic carbon dots (CDs) to induce pyroptosis of cancer cells for fabricating WCCV is reported. Photocatalytic CDs are capable of generating substantial amounts of hydroxyl radicals and can effectively decrease cytoplasmic pH values under white light irradiation. This process efficiently triggers cancer cell pyroptosis through the reactive oxygen species (ROS)-mitochondria-caspase 3-gasdermin E pathway and the proton motive force-driven mitochondrial ATP synthesis pathway. Moreover, in vitro, these photocatalytic CDs-induced pyroptotic cancer cells (PCIP) can hyperactivate macrophage (M0-M1) with upregulation of major histocompatibility complex class II expression. In vivo, PCIP induced specific immune-preventive effects in melanoma and breast cancer mouse models through anticancer immune memory, demonstrating effective WCCV. This work provides novel insights for inducing cancer cell pyroptosis and bridges the gap in the fabrication of WCCV based on pyroptotic cancer cells.

2.
Sci Adv ; 10(27): eadn7896, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968361

RESUMO

Recent years have witnessed a surge of interest in tuning the optical properties of organic semiconductors for diverse applications. However, achieving control over the optical bandgap in the second near-infrared (NIR-II) window has remained a major challenge. To address this, here we report a polaron engineering strategy that introduces diverse defects into carbon quantum dots (CQDs). These defects induce lattice distortions resulting in the formation of polarons, which can absorb the near-field scattered light. Furthermore, the formed polarons in N-related vacancies can generate thermal energy through the coupling of lattice vibrations, while the portion associated with O-related defects can return to the ground state in the form of NIR-II fluorescence. On the basis of this optical absorption model, these CQDs have been successfully applied to NIR-II fluorescence imaging and photothermal therapy. This discovery could open a promising route for the polarons of organic semiconductor materials as NIR-II absorbers in nanomedical applications.


Assuntos
Carbono , Raios Infravermelhos , Neoplasias , Pontos Quânticos , Pontos Quânticos/química , Carbono/química , Humanos , Neoplasias/terapia , Neoplasias/diagnóstico por imagem , Animais , Imagem Óptica/métodos , Camundongos , Linhagem Celular Tumoral
3.
Adv Mater ; 35(35): e2302705, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37216626

RESUMO

Noninvasive fluorescence (FL) imaging and high-performance photocatalytic therapy (PCT) are opposing optical properties that are difficult to combine in a single material system. Herein, a facile approach to introducing oxygen-related defects in carbon dots (CDs) via post-oxidation with 2-iodoxybenzoic acid is reported, in which some nitrogen atoms are substituted by oxygen atoms. Unpaired electrons in these oxygen-related defects rearrange the electronic structure of the oxidized CDs (ox-CDs), resulting in an emerging near-infrared (NIR) absorption band. These defects not only contribute to enhanced NIR bandgap emission but also act as trappers for photoexcited electrons to promote efficient charge separation on the surface, leading to abundant photo-generated holes on the ox-CDs surface under visible-light irradiation. Under white LED torch irradiation, the photo-generated holes oxidize hydroxide to hydroxyl radicals in the acidification of the aqueous solution. In contrast, no hydroxyl radicals are detected in the ox-CDs aqueous solution under 730 nm laser irradiation, indicating noninvasive NIR FL imaging potential. Utilizing the Janus optical properties of the ox-CDs, the in vivo NIR FL imaging of sentinel lymph nodes around tumors and efficient photothermal enhanced tumor PCT are demonstrated.


Assuntos
Neoplasias , Oxigênio , Humanos , Oxigênio/química , Carbono/química , Fototerapia , Luz , Neoplasias/terapia , Água , Corantes
4.
J Colloid Interface Sci ; 644: 107-115, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37105034

RESUMO

Biocompatible metal-free carbon dots (CDs) with good photo-induced strong oxidation capacity in aqueous solutions are scarce for high-performance photocatalytic antibacterial and tumor therapy. In this work, we achieved effective visible light-induced cell death and antibacterial performance based on biocompatible metal-free CDs. The visible-light-induced reducing ability of the surface electron-withdrawing structure of the CDs allowed for the remaining photo-induced holes with high oxidation capacity to oxidize water molecules and generate hydroxyl radicals. Antibiotic-resistant bacteria were effectively inhibited by the CDs under xenon lamp irradiation with 450 nm long pass filter. Moreover, CD-based tumor photocatalytic therapy in mice was achieved using a xenon lamp with 450 nm long pass filter (0.3 W cm-2).


Assuntos
Carbono , Neoplasias , Animais , Camundongos , Carbono/química , Luz , Antibacterianos/farmacologia , Antibacterianos/química , Oxirredução , Metais , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA