RESUMO
Immune therapy is the new frontier of cancer treatment. Therapeutic radiation is a known inducer of immune response and can be limited by immunosuppressive mediators including cyclooxygenase-2 (COX2) that is highly expressed in aggressive triple negative breast cancer (TNBC). A clinical cohort of TNBC tumors revealed poor radiation therapeutic efficacy in tumors expressing high COX2. Herein, we show that radiation combined with adjuvant NSAID (indomethacin) treatment provides a powerful combination to reduce both primary tumor growth and lung metastasis in aggressive 4T1 TNBC tumors, which occurs in part through increased antitumor immune response. Spatial immunological changes including augmented lymphoid infiltration into the tumor epithelium and locally increased cGAS/STING1 and type I IFN gene expression were observed in radiation-indomethacin-treated 4T1 tumors. Thus, radiation and adjuvant NSAID treatment shifts "immune desert phenotypes" toward antitumor M1/TH1 immune mediators in these immunologically challenging tumors. Importantly, radiation-indomethacin combination treatment improved local control of the primary lesion, reduced metastatic burden, and increased median survival when compared with radiation treatment alone. These results show that clinically available NSAIDs can improve radiation therapeutic efficacy through increased antitumor immune response and augmented local generation of cGAS/STING1 and type I IFNs.
Assuntos
Proteínas de Membrana , Transdução de Sinais , Linfócitos T Citotóxicos , Animais , Proteínas de Membrana/metabolismo , Camundongos , Feminino , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/radioterapia , Indometacina/farmacologia , Indometacina/uso terapêutico , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/uso terapêutico , Nucleotidiltransferases/metabolismo , Interferon Tipo I/metabolismo , Ciclo-Oxigenase 2/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Camundongos Endogâmicos BALB CRESUMO
A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER-breast cancer has been established. However, mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines. Herein, single cell RNAseq analysis of TNBC cells shows potent NOS2 and COX2 induction by IFNγ combined with IL1ß or TNFα. Given that IFNγ is secreted by cytolytic lymphocytes, which improve clinical outcomes, this role of IFNγpresents a dichotomy. To explore this conundrum, tumor NOS2, COX2, and CD8 + T cells were spatially analyzed in aggressive ER-, TNBC, and HER2+ breast tumors. High expression and clustering of NOS2-expressing tumor cells occurred at the tumor/stroma interface in the presence of stroma-restricted CD8 + T cells. High expression and clustering of COX2-expressing tumor cells extended into immune desert regions in the tumor core where CD8 + T cell penetration was limited or absent. Moreover, high NOS2-expressing tumor cells were proximal to areas with increased satellitosis suggestive of cell clusters with a higher metastatic potential. Further in vitro experiments revealed that IFNγ+IL1ß/TNFα increased elongation and migration of treated tumor cells. This spatial analysis of the tumor microenvironment provides important insight of distinct neighborhoods where stroma-restricted CD8 + T cells exist proximal to NOS2-expressing tumor niches that could have increased metastatic potential.
RESUMO
Estrogen receptor-negative (ER-) breast cancer is an aggressive breast cancer subtype with limited therapeutic options. Upregulated expression of both inducible nitric oxide synthase (NOS2) and cyclo-oxygenase (COX2) in breast tumors predicts poor clinical outcomes. Signaling molecules released by these enzymes activate oncogenic pathways, driving cancer stemness, metastasis, and immune suppression. The influence of tumor NOS2/COX2 expression on the landscape of immune markers using multiplex fluorescence imaging of 21 ER- breast tumors were stratified for survival. A powerful relationship between tumor NOS2/COX2 expression and distinct CD8+ T cell phenotypes was observed at 5 years post-diagnosis. These results were confirmed in a validation cohort using gene expression data showing that ratios of NOS2 to CD8 and COX2 to CD8 are strongly associated with poor outcomes in high NOS2/COX2-expressing tumors. Importantly, multiplex imaging identified distinct CD8+ T cell phenotypes relative to tumor NOS2/COX2 expression in Deceased vs Alive patient tumors at 5-year survival. CD8+NOS2-COX2- phenotypes defined fully inflamed tumors with significantly elevated CD8+ T cell infiltration in Alive tumors expressing low NOS2/COX2. In contrast, two distinct phenotypes including inflamed CD8+NOS2+COX2+ regions with stroma-restricted CD8+ T cells and CD8-NOS2-COX2+ immune desert regions with abated CD8+ T cell penetration, were significantly elevated in Deceased tumors with high NOS2/COX2 expression. These results were supported by applying an unsupervised nonlinear dimensionality-reduction technique, UMAP, correlating specific spatial CD8/NOS2/COX2 expression patterns with patient survival. Moreover, spatial analysis of the CD44v6 and EpCAM cancer stem cell (CSC) markers within the CD8/NOS2/COX2 expression landscape revealed positive correlations between EpCAM and inflamed stroma-restricted CD8+NOS2+COX2+ phenotypes at the tumor/stroma interface in deceased patients. Also, positive correlations between CD44v6 and COX2 were identified in immune desert regions in deceased patients. Furthermore, migrating tumor cells were shown to occur only in the CD8-NOS2+COX2+ regions, identifying a metastatic hot spot. Taken together, this study shows the strength of spatial localization analyses of the CD8/NOS2/COX2 landscape, how it shapes the tumor immune microenvironment and the selection of aggressive tumor phenotypes in distinct regions that lead to poor clinical outcomes. This technique could be beneficial for describing tumor niches with increased aggressiveness that may respond to clinically available NOS2/COX2 inhibitors or immune-modulatory agents.
RESUMO
Antitumor immune polarization is a key predictor of clinical outcomes to cancer therapy. An emerging concept influencing clinical outcome involves the spatial location of CD8+ T cells, within the tumor. Our earlier work demonstrated immunosuppressive effects of NOS2 and COX2 tumor expression. Here, we show that NOS2/COX2 levels influence both the polarization and spatial location of lymphoid cells including CD8+ T cells. Importantly, elevated tumor NOS2/COX2 correlated with exclusion of CD8+ T cells from the tumor epithelium. In contrast, tumors expressing low NOS2/COX2 had increased CD8+ T cell penetration into the tumor epithelium. Consistent with a causative relationship between these observations, pharmacological inhibition of COX2 with indomethacin dramatically reduced tumor growth of the 4T1 model of TNBC in both WT and Nos2- mice. This regimen led to complete tumor regression in â¼20-25% of tumor-bearing Nos2- mice, and these animals were resistant to tumor rechallenge. Th1 cytokines were elevated in the blood of treated mice and intratumoral CD4+ and CD8+ T cells were higher in mice that received indomethacin when compared to control untreated mice. Multiplex immunofluorescence imaging confirmed our phenotyping results and demonstrated that targeted Nos2/Cox2 blockade improved CD8+ T cell penetration into the 4T1 tumor core. These findings are consistent with our observations in low NOS2/COX2 expressing breast tumors proving that COX2 activity is responsible for limiting the spatial distribution of effector T cells in TNBC. Together these results suggest that clinically available NSAID's may provide a cost-effective, novel immunotherapeutic approach for treatment of aggressive tumors including triple negative breast cancer.
Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Orientação Espacial , Imunoterapia , Progressão da Doença , Linfócitos/metabolismo , Indometacina/farmacologia , Indometacina/metabolismo , Indometacina/uso terapêuticoRESUMO
Nitric oxide (NO) is implicated in several biological processes, including cancer progression. At low concentrations, it promotes cell survival and tumor progression, and at high concentrations it causes apoptosis and cell death. Until now, the impact of NO donors has not been investigated on human endometrial tumors. Four cancer cell lines were exposed to different concentrations of DETA/NO for 24 to 120 h. The effects of DETA/NO on cell proliferation and invasion were determined utilizing MTS and Boyden chamber assays, respectively. The DETA/NO induced a dose and time-dependent reduction in cell viability by the activation of caspase-3 and cell cycle arrest at the G0/G1 phase that was associated with the attenuated expression of cyclin-D1 and D3. Furthermore, the reduction in the amount of CD133-expressing cancer stem-like cell subpopulation was observed following DETA/NO treatment of cells, which was associated with a decreased expression of stem cell markers and attenuation of cell invasiveness. To understand the mechanisms by which DETA/NO elicits anti-cancer effects, RNA sequencing (RNA-seq) was used to ascertain alterations in the transcriptomes of human endometrial cancer cells. RNA-seq analysis revealed that 14 of the top 21 differentially expressed genes were upregulated and seven were downregulated in endometrial cancer cells with DETA/NO. The genes that were upregulated in all four cell lines with DETA/NO were the tumor suppressors Ras association domain family 1 isoform A (RASSF1) and Cyclin-dependent kinase inhibitor 1A (CDKN1A). The expression patterns of these genes were confirmed by Western blotting. Taken together, the results provide the first evidence in support of the anti-cancer effects of DETA/NO in endometrial cancer.
Assuntos
Inibidor de Quinase Dependente de Ciclina p21/genética , Neoplasias do Endométrio/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Proteínas Supressoras de Tumor/genética , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Óxido Nítrico/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Proteínas Supressoras de Tumor/metabolismoRESUMO
Control of cellular metabolism is critical for efficient cell function, although little is known about the interplay between cell subset-specific metabolites in situ, especially in the tumor setting. Here, we determined how a macrophage-specific (MÏ-specific) metabolite, itaconic acid, can regulate tumor progression in the peritoneum. We show that peritoneal tumors (B16 melanoma or ID8 ovarian carcinoma) elicited a fatty acid oxidation-mediated increase in oxidative phosphorylation (OXPHOS) and glycolysis in peritoneal tissue-resident macrophages (pResMÏ). Unbiased metabolomics identified itaconic acid, the product of immune-responsive gene 1-mediated (Irg1-mediated) catabolism of mitochondrial cis-aconitate, among the most highly upregulated metabolites in pResMÏ of tumor-bearing mice. Administration of lentivirally encoded Irg1 shRNA significantly reduced peritoneal tumors. This resulted in reductions in OXPHOS and OXPHOS-driven production of ROS in pResMÏ and ROS-mediated MAPK activation in tumor cells. Our findings demonstrate that tumors profoundly alter pResMÏ metabolism, leading to the production of itaconic acid, which potentiates tumor growth. Monocytes isolated from ovarian carcinoma patients' ascites fluid expressed significantly elevated levels of IRG1. Therefore, IRG1 in pResMÏ represents a potential therapeutic target for peritoneal tumors.
Assuntos
Macrófagos Peritoneais/metabolismo , Neoplasias Peritoneais/metabolismo , Succinatos/metabolismo , Animais , Carboxiliases , Linhagem Celular Tumoral , Progressão da Doença , Ácidos Graxos/metabolismo , Feminino , Glicólise , Humanos , Hidroliases/deficiência , Hidroliases/genética , Hidroliases/metabolismo , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Neoplasias Ovarianas/metabolismo , Fosforilação Oxidativa , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/patologia , Proteínas/metabolismo , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Carga TumoralRESUMO
INTRODUCTION: The Ets-1 transcription factor is a candidate breast cancer oncogene that regulates the expression of genes involved in tumor progression and metastasis. Ets-1 signaling has also been linked to the development of a basal-like breast cancer phenotype. We recently described a nitric oxide (NO)-induced gene signature that is associated with poor disease outcome in estrogen receptor-negative (ER-) breast cancer and contains both stem cell-like and basal-like components. Thus, we examined the role of Ets-1 in NO signaling and NO-induced phenotypes in ER- human breast cancer cells. METHODS: Promoter region analyses were performed on genes upregulated in inducible nitric oxide synthase (NOS2) high expressing tumors for Ets-binding sites. In vitro mechanisms were examined in human basal-like breast cancer cells lines. NO signaling effects were studied using either forced NOS2 expression or the use of a chemical NO-donor, diethlylenetriamine NONOate (DETANO). RESULTS: Promoter region analysis of genes that are up-regulated in human ER-negative breast tumors with high NOS2 expression revealed that the Ets-binding sequence is the only common promoter element present in all of these genes, indicating that Ets-1 is the key transcriptional factor down-stream of oncogenic NOS2-signaling. Accordingly, both forced NOS2 over-expression and exposure to NO-donors resulted in significant Ets-1 transcriptional activation in ER- breast cancer cells. Functional studies showed that NO activated Ets-1 transcriptional activity via a Ras/MEK/ERK signaling pathway by a mechanism that involved Ras S-nitrosylation. RNA knock-down of Ets-1 suppressed NO-induced expression of selected basal-like breast cancer markers such as P-cadherin, S100A8, IL-8 and αß-crystallin. Additionally, Ets-1 knock-down reduced NO-mediated cellular proliferation, matrix metalloproteinase and cathepsin B activities, as well as matrigel invasion. CONCLUSIONS: These data show that Ets-1 is a key transcriptional mediator of oncogenic NO signaling that promotes the development of an aggressive disease phenotype in ER- breast cancer in an Ets-1 and Ras-dependent manner, providing novel clues of how NOS2 expression in human breast tumors is functionally linked to poor patient survival.
Assuntos
Neoplasias da Mama/metabolismo , Óxido Nítrico/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Metaloproteinases da Matriz/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Receptores de Estrogênio/genética , Transcrição Gênica , Proteínas ras/metabolismoRESUMO
Increased inducible nitric oxide synthase (NOS2) expression in breast tumors is associated with decreased survival of estrogen receptor negative (ER-) breast cancer patients. We recently communicated the preliminary observation that nitric oxide (NO) signaling results in epidermal growth factor receptor (EGFR) tyrosine phosphorylation. To further define the role of NO in the pathogenesis of ER- breast cancer, we examined the mechanism of NO-induced EGFR activation in human ER- breast cancer. NO was found to activate EGFR and Src by a mechanism that includes S-nitrosylation. NO, at physiologically relevant concentrations, induced an EGFR/Src-mediated activation of oncogenic signal transduction pathways (including c-Myc, Akt, and ß-catenin) and the loss of PP2A tumor suppressor activity. In addition, NO signaling increased cellular EMT, expression and activity of COX-2, and chemoresistance to adriamycin and paclitaxel. When connected into a network, these concerted events link NO to the development of a stem cell-like phenotype, resulting in the upregulation of CD44 and STAT3 phosphorylation. Our observations are also consistent with the finding that NOS2 is associated with a basal-like transcription pattern in human breast tumors. These results indicate that the inhibition of NOS2 activity or NO signaling networks may have beneficial effects in treating basal-like breast cancer patients.
Assuntos
Neoplasias da Mama/enzimologia , Carcinoma Basocelular/enzimologia , Receptores ErbB/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Animais , Neoplasias da Mama/metabolismo , Carcinoma Basocelular/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Transição Epitelial-Mesenquimal , Feminino , Humanos , Macrófagos/citologia , Camundongos , Nitratos/análise , Nitratos/metabolismo , Óxido Nítrico/farmacologia , Nitritos/análise , Nitritos/metabolismo , Nitrosação , Fosforilação , Proteína Fosfatase 2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , beta Catenina/metabolismoRESUMO
The NF-κB transcription factor family influences breast cancer outcomes by regulating genes involved in tumor progression, angiogenesis, and metastasis. Dithiolethiones, a class of naturally occurring compounds with cancer chemoprevention effects that have become clinically available, have been found to inhibit NF-κB activity. However, the mechanism of this inhibition has not been identified, and the influence of dithiolethines on NF-κB pathway in breast cancer cells has not been examined. Here, we investigated the chemical and biochemical effects of dithiolethione on NF-κB and downstream effector molecules in estrogen receptor-negative breast cancer cells and murine tumor xenografts. The dithiolethiones ACS-1 and ACS-2 inhibited NF-κB transcriptional activity. Interestingly, this inhibition was not due to H(2)S release or protein phosphatase 2A activation, which are key properties of dithiolethiones, but occurred via a covalent reaction with the NF-κB p50 and p65 subunits to inhibit DNA binding. Dithiolethione-mediated inhibition of NF-κB-regulated genes resulted in the inhibition of interleukin (IL)-6, IL-8, urokinase-type plasminogen activator, and VEGF production. ACS-1 also inhibited matrix metalloproteinase-9 activity, cellular migration, and invasion, and ACS-2 reduced tumor burden and resulted in increased tumor host interactions. Together, our findings suggest that dithiolethiones show potential clinical use for estrogen negative breast cancer as a chemotherapeutic or adjuvant therapy.
Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Tionas/farmacologia , Transporte Ativo do Núcleo Celular , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Feminino , Humanos , Quinase I-kappa B/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Receptores de Estrogênio/biossíntese , Ativação Transcricional/efeitos dos fármacosRESUMO
Basal-like breast cancer is an aggressive disease with limited therapeutic options because these tumors frequently express the 'triple-negative' phenotype. We have recently reported that inducible nitric oxide synthase (NOS2) is a strong predictor of survival in patients with estrogen receptor negative [ER(-)] breast cancer, and that NOS2 expression is correlated with a basal-like phenotype. Recent reports also describe the pro-tumor effects of NO in breast and many other types of cancer. NO promotes cancer progression by activating several oncogenic signaling pathways such as extracellular signal-regulated kinases (ERK)-1/2, phosphoinositide 3-kinases (PI3K)/Akt, and c-Myc. Protein phosphatase 2A (PP2A) is a tumor suppressor that negatively regulates the same cancer-related signaling pathways that are activated by NO. PP2A activity is suppressed in tumor cells, but potential pharmacological agents have recently been described to increase PP2A activity in ER(-) breast cancer cells. We examine here the various functions of NO and PP2A in breast cancer and propose a novel mechanism by which activation of PP2A antagonizes NO signaling that promotes ER(-) breast cancer.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Óxido Nítrico/metabolismo , Proteína Fosfatase 2/metabolismo , Receptores de Estrogênio/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Células Tumorais CultivadasRESUMO
Transgenerational carcinogenesis refers to transmission of cancer risk to the untreated progeny of parents exposed to carcinogens before mating. Accumulated evidence suggests that the mechanism of this process is epigenetic, and might involve hormonal and gene expression changes in offspring. To begin to test this hypothesis, we utilized a mouse model (NIH Swiss) in which exposure of fathers to Cr(III) chloride 2 wk before mating can alter incidence of neoplastic and nonneoplastic changes in offspring tissues. Utilizing a MS-RDA approach, we found that the sperm of these fathers had a significantly higher percentage of undermethylated copies of the 45S ribosomal RNA gene (rRNA); this finding was confirmed by bisulfite sequencing. Because gene methylation is a known mechanism of expression control in germ cells, and ribosomal RNA levels have been linked to cancer, these findings are consistent with the hypothesis. Secondly, we observed that offspring of Cr(III)-treated fathers were significantly heavier than controls, and had higher levels of serum T3. Possible effects of T3 levels on gene expression in the offspring were examined by microarray analysis of cDNAs from liver. A total of 58 genes, including 25 named genes, had expression ratios that correlated significantly with serum T3 ratios at P = 0.001. Some of these genes have potential roles in growth and/or tumor suppression. These results also support the hypothesis of an epigenetic and/or gene expression-based mechanism for transgenerational carcinogenesis. Published 2004 Wiley-Liss, Inc.