Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12143, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802677

RESUMO

Microglia are natural immune cells in the central nervous system, and the activation of microglia is accompanied by a reprogramming of glucose metabolism. In our study, we investigated the role of long non-coding RNA taurine-upregulated gene 1 (TUG1) in regulating microglial glucose metabolism reprogramming and activation. BV2 cells were treated with Lipopolysaccharides (LPS)/Interferon-γ (IFN-γ) to establish a microglial activation model. The glycolysis inhibitor 2-Deoxy-D-glucose (2-DG) was used as a control. The expression levels of TUG1 mRNA and proinflammatory cytokines such as Interleukin-1ß (IL-1ß), Interleukin -6, and Tumor Necrosis Factor-α mRNA and anti-inflammatory cytokines such as IL-4, Arginase 1(Arg1), CD206, and Ym1 were detected by RT-qPCR. TUG1 was silenced using TUG1 siRNA and knocked out using CRISPR/Cas9. The mRNA and protein expression levels of key enzymes involved in glucose metabolism, such as Hexokinase2, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Lactate dehydrogenase, Glucose 6 phosphate dehydrogenase, and Pyruvate dehydrogenase (PDH), were determined by RT-qPCR and Western blotting. The glycolytic rate of microglial cells was measured using Seahorse. Differential metabolites were determined by metabolomics, and pathway enrichment was performed using these differential metabolites. Our findings revealed that the expression of TUG1 was elevated in proinflammatory-activated microglia and positively correlated with the levels of inflammatory factors. The expression of anti-inflammatory cytokines such as IL-4, Arg1, CD206, and Ym1 were decreased when induced with LPS/IFN-γ. However, this decrease was reversed by the treatment with 2-DG. Silencing of GAPDH led to an increase in the expression of TUG1 and inflammatory factors. TUG1 knockout (TUG1KO) inhibited the expression of glycolytic key enzymes and promoted the expression of oxidative phosphorylation key enzymes, shifting the metabolic profile of activated microglia from glycolysis to oxidative phosphorylation. Additionally, TUG1KO reduced the accumulation of metabolites, facilitating the restoration of the tricarboxylic acid cycle and enhancing oxidative phosphorylation in microglia. Furthermore, the downregulation of TUG1 was found to reduce the expression of both proinflammatory and anti-inflammatory cytokines under normal conditions. Interestingly, when induced with LPS/IFN-γ, TUG1 downregulation showed a potentially beneficial effect on microglia in terms of inflammation. Downregulation of TUG1 expression inhibits glycolysis and facilitates the shift of microglial glucose metabolism from glycolysis to oxidative phosphorylation, promoting their transformation towards an anti-inflammatory phenotype and exerting anti-inflammatory effects in BV2.


Assuntos
Glucose , Glicólise , Lipopolissacarídeos , Microglia , RNA Longo não Codificante , Microglia/metabolismo , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Glucose/metabolismo , Camundongos , Lipopolissacarídeos/farmacologia , Citocinas/metabolismo , Inflamação/metabolismo , Inflamação/genética , Interferon gama/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , beta-N-Acetil-Hexosaminidases/genética , Linhagem Celular , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Lectinas de Ligação a Manose/genética , Desoxiglucose/farmacologia , Interleucina-4/metabolismo , Interleucina-1beta/metabolismo , Reprogramação Metabólica , Arginase , Hexoquinase , Lectinas
2.
J Ethnopharmacol ; 321: 117528, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043754

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Although the Traditional Chinese Medicine (TCM) prescription of Danggui Shaoyao San (DSS) presents substantial clinical efficacy and promising clinical prospects, the safety of DSS and its extracts have been inadequately investigated. The larva-adult duality of the zebrafish model offers a more efficient approach for evaluating the safety of herbal preparations in the fields of toxicology and pharmacology. AIM OF THE STUDY: To investigate the acute toxicity of the extract derived from Danggui Shaoyao San, a traditional Chinese medicine preparation, on both Danio rerio embryos and adult organisms. MATERIALS AND METHODS: The components of DSS were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The hatching rate of Danio rerio juveniles with different concentrations of DSS was calculated and the morphological changes of juveniles after administration were observed through a microscope. The behavioral trajectory of the adult fish was recorded by the observation tower of the automated Danio rerio analysis system, and DSS's effects on the behavior was analyzed. The pathological changes of Danio rerio gills, livers, kidneys, intestines and spermaries were examined using HE staining. RESULTS: Compared with the control group, 25, 50 and 100 mg/L of DSS did not elicit any significant impacts on the hatching rate and morphology. Both 200 mg/L and the propylene glycol 2% reduced the hatching rate and caused the morphological teratogenic changes of the juvenile fish. The dosage of DSS below 100 mg/L had no discernible effect on the behavior of the adult fish, whereas the application of propylene glycol 2% was found to stimulate the adult fish, resulting in a notable increase in high-speed movement distance. 100 mg/L DSS group was not observed to cause any noticeable damage to the gills, livers, intestines and spermaries of Danio rerio, only mild nephrotoxicity was detected. The propylene glycol 2% group was found to result in pathological changes such as hyperplasia of epithelial cells on secondary lamellae, liver cell outline loss or atypia, tubal disorganization, goblet cell hypertrophy and irregularly arranged spermatozoa. CONCLUSION: A viable approach for conducting toxicological studies on TCM preparations was developed and tested in this research. The findings showed that Danggui Shaoyao San has minimal acute toxicity to embryos and adult organisms at concentrations up to 100 mg/L. These results indicate that Danggui Shaoyao San is a safe TCM preparation.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Masculino , Animais , Peixe-Zebra , Cromatografia Líquida , Espectrometria de Massas em Tandem , Medicamentos de Ervas Chinesas/farmacologia , Propilenoglicóis
3.
Aging (Albany NY) ; 15(22): 13239-13264, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38006400

RESUMO

The purpose of this study is to investigate the therapeutic effect of Qi Fu Yin (QFY) on Alzheimer's disease (AD) both computationally and experimentally. Network pharmacology analysis and molecular docking were conducted to identify potential targets and signaling pathways involved in QFY treating AD. Streptozotocin-induced AD rat model was used to verify important targets and predicted pathways. The components of QFY were identified using liquid chromatography-tandem mass spectrometry. The results indicate that the potential targets of QFY are highly enriched for anti-inflammatory pathways. Molecular docking analysis revealed stable structures formed between QFY's active compounds, including stigmasterol, ß-sitosterol, and isorhamnetin, and the identified targets. In vivo, QFY improved cognitive memory in AD rats and reduced the mRNA expression levels of toll-like receptor 4 (TLR4), the receptor for advanced glycation end products (AGER), and the inflammatory factors interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) in the brains of AD rats. Furthermore, QFY effectively reduced nuclear translocation of nuclear factor-kappa B (NF-κB) and inhibited NF-κB and microglia activation. In conclusion, QFY can ameliorate neuroinflammation in AD model rats, partly via the inhibition of TLR4 and RAGE/NF-κB pathway and microglia activation, thereby enhancing learning and memory in AD model rats.


Assuntos
Doença de Alzheimer , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Doenças Neuroinflamatórias , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa/metabolismo
4.
Sci Rep ; 13(1): 6895, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106067

RESUMO

Alzheimer's disease (AD) is characterized as a distinct onset and progression of cognitive and functional decline associated with age, as well as a specific neuropathology. It has been discovered that glutamine (Gln) metabolism plays a crucial role in cancer. However, a full investigation of its role in Alzheimer's disease is still missing. This study intended to find and confirm potential Gln-related genes associated with AD using bioinformatics analysis. The discovery of GlnMgs was made possible by the intersection of the WGCNA test and 26 Gln-metabolism genes (GlnMgs). GlnMgs' putative biological functions and pathways were identified using GSVA. The LASSO method was then used to identify the hub genes as well as the diagnostic efficiency of the four GlnMgs in identifying AD. The association between hub GlnMgs and clinical characteristics was also studied. Finally, the GSE63060 was utilized to confirm the levels of expression of the four GlnMgs. Four GlnMgs were discovered (ATP5H, NDUFAB1, PFN2, and SPHKAP). For biological function analysis, cell fate specification, atrioventricular canal development, and neuron fate specification were emphasized. The diagnostic ability of the four GlnMgs in differentiating AD exhibited a good value. This study discovered four GlnMgs that are linked to AD. They shed light on potential new biomarkers for AD and tracking its progression.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Prognóstico , Glutamina , Biomarcadores/metabolismo , Profilinas
5.
Front Public Health ; 11: 1293134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162605

RESUMO

Introduction: Memory-related diseases (MDs) pose a significant healthcare challenge globally, and early detection is essential for effective intervention. This study investigates the potential of Activities of Daily Living (ADL) as a clinical diagnostic indicator for MDs. Utilizing data from the 2018 national baseline survey of the China Health and Retirement Longitudinal Study (CHARLS), encompassing 10,062 Chinese individuals aged 45 or older, we assessed ADL using the Barthel Index (BI) and correlated it with the presence of MDs. Statistical analysis, supplemented by machine learning algorithms (Support Vector Machine, Decision Tree, and Logistic Regression), was employed to elucidate the relationship between ADL and MDs. Background: MDs represent a significant public health concern, necessitating early detection and intervention to mitigate their impact on individuals and society. Identifying reliable clinical diagnostic signs for MDs is imperative. ADL have garnered attention as a potential marker. This study aims to rigorously analyze clinical data and validate machine learning algorithms to ascertain if ADL can serve as an indicator of MDs. Methods: Data from the 2018 national baseline survey of the China Health and Retirement Longitudinal Study (CHARLS) were employed, encompassing responses from 10,062 Chinese individuals aged 45 or older. ADL was assessed using the BI, while the presence of MDs was determined through health report questions. Statistical analysis was executed using SPSS 25.0, and machine learning algorithms, including Support Vector Machine (SVM), Decision Tree Learning (DT), and Logistic Regression (LR), were implemented using Python 3.10.2. Results: Population characteristics analysis revealed that the average BI score for individuals with MDs was 70.88, significantly lower than the average score of 87.77 in the control group. Pearson's correlation analysis demonstrated a robust negative association (r = -0.188, p < 0.001) between ADL and MDs. After adjusting for covariates such as gender, age, smoking status, drinking status, hypertension, diabetes, and dyslipidemia, the negative relationship between ADL and MDs remained statistically significant (B = -0.002, ß = -0.142, t = -14.393, 95% CI = -0.002, -0.001, p = 0.000). The application of machine learning models further confirmed the predictive accuracy of ADL for MDs, with area under the curve (AUC) values as follows: SVM-AUC = 0.69, DT-AUC = 0.715, LR-AUC = 0.7. Comparative analysis of machine learning outcomes with and without the BI underscored the BI's role in enhancing predictive abilities, with the DT model demonstrating superior performance. Conclusion: This study establishes a robust negative correlation between ADL and MDs through comprehensive statistical analysis and machine learning algorithms. The results validate ADL as a promising diagnostic indicator for MDs, with enhanced predictive accuracy when coupled with the Barthel Index. Lower levels of ADL are associated with an increased likelihood of developing memory-related diseases, underscoring the clinical relevance of ADL assessment in early disease detection.


Assuntos
Atividades Cotidianas , Algoritmos , Humanos , Estudos Longitudinais , Aposentadoria , Aprendizado de Máquina
6.
Biomed Res Int ; 2022: 9491755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528169

RESUMO

Alzheimer's disease (AD) is a serious neurodegenerative disease. It is widely believed that the accumulation of amyloid beta (Aß) in neurons around neurofibrillary plaques is the main pathological characteristic of AD; however, the molecular mechanism underlying these pathological changes is not clear. Baicalin is a flavonoid extracted from the dry root of Scutellaria baicalensis Georgi. Studies have shown that baicalin exerts excellent anti-inflammatory and neuroprotective effects. In this study, an AD cell model was established by exposing SH-SY5Y cells to Aß 1-42 and treating them with baicalin. Cell survival, cell cycle progression, and apoptosis were measured by MTT, flow cytometry, and immunofluorescence assays, respectively. The expression levels of Ras, ERK/ERK phosphorylation (p-ERK), and cyclin D1 were measured by Western blotting. In addition, whether the MEK activator could reverse the regulatory effect of baicalin on Ras-ERK signaling was investigated using Western blotting. We found that baicalin improved the survival, promoted the proliferation, and inhibited the apoptosis of SH-SY5Y cells after Aß 1-42 treatment. Baicalin also ameliorated Aß 1-42-induced cell cycle arrest at the S phase and induced apoptosis. Furthermore, baicalin inhibited the levels of Ras, p-ERK, and cyclin D1 induced by Aß, and this effect could be reversed by the MEK activator. Therefore, we suggest that baicalin may regulate neuronal cell cycle progression and apoptosis in Aß 1-42-treated SH-SY5Y cells by inhibiting the Ras-ERK signaling pathway. This study suggested that baicalin might be a useful therapeutic agent for senile dementia, especially AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apoptose , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Transdução de Sinais
7.
Zhongguo Zhong Yao Za Zhi ; 47(6): 1603-1610, 2022 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-35347959

RESUMO

This study investigated the mechanism of baicalin on lipopolysaccharide(LPS)/interferon γ(IFN-γ)-induced inflammatory microglia based on the triggering receptor expressed on myeloid cells 2(TREM2)/Toll-like receptor 4(TLR4)/nuclear factor kappaB(NF-κB) pathway. Specifically, LPS and IFN-γ were used to induce inflammation in mouse microglia BV2 cells. Then the normal group, model group, low-dose(5 µmol·L~(-1)) baicalin group, medium-dose(10 µmol·L~(-1)) baicalin group, high-dose(20 µmol·L~(-1)) baicalin group, and minocycline(10 µmol·L~(-1)) group were designed. Cell viability was detected by CCK-8 assay and cell morphology was observed under bright field. The expression of interleukin-1ß(IL-1ß), interleukin-4(IL-4), inducible nitric oxide synthase(iNOS), interleukin-6(IL-6), interleukin-10(IL-10), and arginase-1(Arg-1) mRNA was detected by real-time quantitative PCR, the protein expression of tumor necrosis factor-α(TNF-α), IL-1ß, TREM2, TLR4, inhibitor kappaB-alpha(IκBα), p-IκBα, NF-κB p65 and p-NF-κB p65 by Western blot, and transfer of NF-κB p65 from cytoplasm to nucleus by cellular immunofluorescence. Compared with the normal group, most of the BV2 cells in the model group tended to demonstrate the pro-inflammatory M1 amoeba morphology, and the model group showed significant increase in the mRNA levels of IL-1ß, IL-6, and iNOS, decrease in the mRNA levels of IL-4, IL-10, and Arg-1(P<0.01), rise of the protein expression of TNF-α, IL-1ß, TLR4, p-IκBα, and p-NF-κB p65(P<0.01), reduction in TREM2 protein expression, and increase in the expression of NF-κB p65 in nucleus. Compared with the model group, baicalin groups and minocycline group showed the recovery of BV2 cell morphology, significant decrease in the mRNA levels of IL-1ß, IL-6 and iNOS, increase in the mRNA levels of IL-4, IL-10, and Arg-1(P<0.01), reduction in the protein expression of TNF-α, IL-1ß, TLR4, p-IκBα, and p-NF-κB p65(P<0.05), rise of TREM2 protein expression, and decrease in the expression of NF-κB p65 in nucleus. In summary, these results suggest that baicalin can regulate the imbalance between TREM2 and TLR4 of microglia and inhibit the activation of downstream NF-κB, thus promoting the polarization of microglia from pro-inflammatory phenotype to anti-inflammatory phenotype.


Assuntos
Lipopolissacarídeos , NF-kappa B , Animais , Flavonoides , Inflamação/tratamento farmacológico , Inflamação/genética , Interferon gama , Lipopolissacarídeos/efeitos adversos , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
8.
Bioorg Chem ; 115: 105277, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34426147

RESUMO

Phytochemical investigation on the roots of Kadsura coccinea led to the isolation five previously unknown dibenzocyclooctadiene lignans, named heilaohusuins A-E (1-5). Their structures determined by NMR spectroscopy, HR-ESI-MS, and ECD spectra. Hepatoprotection effects of a series of dibenzocyclooctadiene derivatives (1-68) were investigated against acetaminophen (APAP) induced HepG2 cells. Compounds 2, 10, 13, 21, 32, 41, 46, and 49 showed remarkable protective effects, increasing the viabilities to > 52.2% (bicyclol, 52.1 ± 1.3%) at 10 µM. The structure-activity relationships (SAR) for hepatoprotective activity were summarized, according to the activity results of dibenzocyclooctadiene derivatives. Furthermore, we found that one new dibenzocyclooctadiene lignan heilaohusuin B attenuates hepatotoxicity, the mechanism might be closely correlated with oxidative stress inhibition via activating the Nrf2 pathway.


Assuntos
Acetaminofen/antagonistas & inibidores , Ciclo-Octanos/farmacologia , Kadsura/química , Lignanas/farmacologia , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Substâncias Protetoras/farmacologia , Acetaminofen/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Octanos/síntese química , Ciclo-Octanos/química , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Lignanas/síntese química , Lignanas/química , Estrutura Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/síntese química , Substâncias Protetoras/química , Relação Estrutura-Atividade
9.
Acta Neuropathol Commun ; 9(1): 129, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315531

RESUMO

The pathogenic mechanisms underlying the development of Alzheimer's disease (AD) remain elusive and to date there are no effective prevention or treatment for AD. Farnesyltransferase (FT) catalyzes a key posttranslational modification process called farnesylation, in which the isoprenoid farnesyl pyrophosphate is attached to target proteins, facilitating their membrane localization and their interactions with downstream effectors. Farnesylated proteins, including the Ras superfamily of small GTPases, are involved in regulating diverse physiological and pathological processes. Emerging evidence suggests that isoprenoids and farnesylated proteins may play an important role in the pathogenesis of AD. However, the dynamics of FT and protein farnesylation in human brains and the specific role of neuronal FT in the pathogenic progression of AD are not known. Here, using postmortem brain tissue from individuals with no cognitive impairment (NCI), mild cognitive impairment (MCI), or Alzheimer's dementia, we found that the levels of FT and membrane-associated H-Ras, an exclusively farnesylated protein, and its downstream effector ERK were markedly increased in AD and MCI compared with NCI. To elucidate the specific role of neuronal FT in AD pathogenesis, we generated the transgenic AD model APP/PS1 mice with forebrain neuron-specific FT knockout, followed by a battery of behavioral assessments, biochemical assays, and unbiased transcriptomic analysis. Our results showed that the neuronal FT deletion mitigates memory impairment and amyloid neuropathology in APP/PS1 mice through suppressing amyloid generation and reversing the pathogenic hyperactivation of mTORC1 signaling. These findings suggest that aberrant upregulation of protein farnesylation is an early driving force in the pathogenic cascade of AD and that targeting FT or its downstream signaling pathways presents a viable therapeutic strategy against AD.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Farnesiltranstransferase/genética , Neurônios/metabolismo , Prenilação de Proteína/genética , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Comportamento Animal , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular , Farnesiltranstransferase/metabolismo , Feminino , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Placa Amiloide/genética , Placa Amiloide/metabolismo , Presenilina-1/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais
10.
Biomed Pharmacother ; 96: 148-152, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28972887

RESUMO

Acute lung injury (ALI) and its severe form acute respiratory distress syndrome remain the leading cause of morbidity and mortality. LianQinJieDu (LQJD), which is a traditional Chinese medicine, has been clinically used for antiviral drug. The present study investigated whether Lianqinjiedu(LQJD) ameliorates lipopolysaccharide(LPS)-induced acute lung injury in rats and aimed to determine the anti-inflammatory effects of LQJD. Rat model with ALI induced by intraperitoneal injection of LPS was treated by oral administration of LQJD. The recruitment of body temperature and the histopathology of lung tissue from all groups were evaluated to grade the severity of the inflammation. The inflammatory cytokine levels, including tumor necrosis factor-α (TNF-α)and interleukin-6 (IL-6), were examined by ELISA assay, and the TLR4 and NF-κBp65 expression levels were evaluated by Real time-PCR and western blotting. It was observed that LQJD reduced the LPS-induced body temperature, inflammatory cytokines level, and lung injuries, and blocked the activation of TLR4/NF-κBp65 signaling in lung tissue. This study demonstrates that LQJD has a protective effect on LPS-induced inflammatory rats through the signaling pathway of TLR4 and NF-κBp65.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Lipopolissacarídeos/toxicidade , NF-kappa B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/antagonistas & inibidores , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Animais , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/metabolismo
11.
J Neurochem ; 142(2): 297-304, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28429406

RESUMO

Autophagy and lysosomal function are important for protein homeostasis and their dysfunction have been associated with Alzheimer's disease (AD). Increased immunoreactivities of an important lysosomal protease, cathepsin D (Cat D), are evident in amyloid plaques and neurons in patients with AD. This study tests the hypothesis that deleting one allele of the cathepsin D gene (Ctsd) impacts cerebral ß-amyloidosis in amyloid-ß precursor protein (APP)sw/PS1dE9 (APP/PS1) double transgenic mice. Despite a significant 38% decrease in Cat D level in APP/PS1/Ctsd+/- compared with APP/PS1/Ctsd+/+ mice, no changes in steady state levels and deposition of Aß were found in the brain. There were also no differences in APP processing, the levels of two other Aß-degrading proteases, the levels of autophagy related protein, such as LAMP2, P62, LC3-I, LC3-II, and Beclin-1, or the markers of neuroinflammation, observed between the APP/PS1/Ctsd+/+ and APP/PS1/Ctsd+/- mice. Our findings demonstrate that in wild-type mice, Cat D protein levels are either in excess or redundant with other factors in the brain, and at least one allele of Ctsd is dispensable for cerebral ß-amyloidosis and autophagy in APP/PS1 transgenic mice.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Autofagia , Encéfalo/metabolismo , Catepsina D/metabolismo , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Autofagia/genética , Autofagia/fisiologia , Catepsina D/genética , Modelos Animais de Doenças , Camundongos Transgênicos , Neurônios/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Placa Amiloide/metabolismo
12.
J Nat Prod ; 79(12): 3079-3085, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28006911

RESUMO

Three new polyacetylenic oleanane-type triterpenoids, baisanqisaponins A-C (1-3), and one new oleanane-type triterpenoid, chikusetsusaponin-V ethyl ester (4), together with 19 known compounds (5-23), were isolated from the roots of Panax japonicus. The structures were elucidated on the basis of spectroscopic analyses and chemical methods. Compounds 1-3 feature a rare panaxytriol group containing a polyacetylene on the saponin skeleton. Neuroprotective activity was evaluated for compounds 1-17, and angiotensin II-induced vascular smooth muscle cell proliferation inhibition was tested for compounds 5-7 and 10-12.


Assuntos
Medicamentos de Ervas Chinesas , Fármacos Neuroprotetores , Panax/química , Poli-Inos , Saponinas , Angiotensinas/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Ressonância Magnética Nuclear Biomolecular , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/farmacologia , Células PC12 , Raízes de Plantas/química , Poli-Inos/química , Poli-Inos/isolamento & purificação , Poli-Inos/farmacologia , Ratos , Ratos Wistar , Saponinas/química , Saponinas/isolamento & purificação , Saponinas/farmacologia
13.
Cell Mol Neurobiol ; 34(5): 693-705, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24687455

RESUMO

The ramifications of statins on plasma cholesterol and coronary heart disease have been well documented. However, there is increasing evidence that inhibition of the mevalonate pathway may provide independent neuroprotective and procognitive pleiotropic effects, most likely via inhibition of isoprenoids, mainly farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). FPP and GGPP are the major donors of prenyl groups for protein prenylation. Modulation of isoprenoid availability impacts a slew of cellular processes including synaptic plasticity in the hippocampus. Our previous work has demonstrated that simvastatin (SV) administration improves hippocampus-dependent spatial memory, rescuing memory deficits in a mouse model of Alzheimer's disease. Treatment of hippocampal slices with SV enhances long-term potentiation (LTP), and this effect is dependent on the activation of Akt (protein kinase B). Further studies showed that SV-induced enhancement of hippocampal LTP is driven by depletion of FPP and inhibition of farnesylation. In the present study, we report the functional consequences of exposure to SV at cellular/synaptic and molecular levels. While application of SV has no effect on intrinsic membrane properties of CA1 pyramidal neurons, including hyperpolarization-activated cyclic-nucleotide channel-mediated sag potentials, the afterhyperpolarization (AHP), and excitability, SV application potentiates the N-methyl D-aspartate receptor (NMDAR)-mediated contribution to synaptic transmission. In mouse hippocampal slices and human neuronal cells, SV treatment increases the surface distribution of the GluN2B subunit of the NMDAR without affecting cellular cholesterol content. We conclude that SV-induced enhancement of synaptic plasticity in the hippocampus is likely mediated by augmentation of synaptic NMDAR components that are largely responsible for driving synaptic plasticity in the CA1 region.


Assuntos
Membrana Celular/metabolismo , Subunidades Proteicas/biossíntese , Receptores de N-Metil-D-Aspartato/biossíntese , Sinvastatina/farmacologia , Transmissão Sináptica/fisiologia , Regulação para Cima/fisiologia , Animais , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Receptores de N-Metil-D-Aspartato/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
14.
J Pineal Res ; 48(2): 117-25, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20041986

RESUMO

beta-Amyloid (Abeta) is strongly involved in the pathogenesis of Alzheimer's disease (AD), and mitochondria play an important role in neurodegenerative disorders. To determine whether any different effect of melatonin on cultured neurons treated with Abeta in vitro and which may be produced through its different action on mitochondria at different stages of culture, we investigated the damage of cultured rat hippocampal neurons mitochondrial function induced by Abeta in young neurons [days in vitro 10 (DIV 10)] and senescent neurons (DIV 25) and the protective effect of melatonin. Rat hippocampal neurons were incubated with amyloid-beta peptide 25-35 (Abeta25-35) alone or pretreatment with melatonin. Cell viability, mitochondrial membrane potential (Deltapsim), ATP and the activity of the respiratory chain complexes were measured. Data showed that Abeta25-35 caused a reduction in Deltapsim, inhibited the activity of the respiratory chain complexes and led to ATP depletion, melatonin attenuated Abeta25-35-induced mitochondrial impairment in young neurons, whereas melatonin had no effect on Abeta25-35-induced mitochondrial damage in senescent neurons. These results demonstrate that melatonin has differential effect on Abeta25-35-induced mitochondrial dysfunction at different stages of culture and suggest that melatonin is useful for the prevention of AD, rather than treatment.


Assuntos
Peptídeos beta-Amiloides/efeitos adversos , Melatonina/farmacologia , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/efeitos adversos , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/prevenção & controle , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Hipocampo/citologia , Melatonina/uso terapêutico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Neurosci Lett ; 448(3): 282-7, 2008 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-18930116

RESUMO

The study was to evaluate the therapeutic benefit of transplanted bone mesenchymal stem cells (BMSCs) transfected never growth factor (NGF) gene and GFP gene (as a reporter gene), in treating the rat with fimbria-fornix lesion. After transduction of NGF gene via recombinant retroviral vectors into the rat BMSCs, BMSCs were therefore transformed into the GFP-NGF positive BMSCs, nearly 100% of BMSCs expressed NGF, and then transplanted into basal forebrain of rat with fimbria-fornix lesion. After 2 weeks post-transplantation, the GFP-NGF positive BMSCs survive and fuse in vivo with astroglia or NGFR p75 positive neurons in the basal forebrain, no evidence of transdifferentiation was observed in this study. The number of NGFR p75 positive neurons in basal forebrain of NGF group was significantly higher than those of the void plasmid group (p < 0.05) or the PBS group (p < 0.01). These results indicate that the GFP-NGF positive BMSCs provide, by way of paracrine, NGF that effectively perform the functions of neuroprotection, which cell fusion may be also contribute to.


Assuntos
Osso e Ossos/citologia , Encéfalo/fisiologia , Fórnice/lesões , Técnicas de Transferência de Genes , Células-Tronco Mesenquimais/fisiologia , Degeneração Neural/genética , Degeneração Neural/prevenção & controle , Fator de Crescimento Neural/genética , Receptor de Fator de Crescimento Neural/biossíntese , Adenoviridae/genética , Animais , Western Blotting , Química Encefálica , Feminino , Imunofluorescência , Fator de Crescimento Neural/biossíntese , Ratos , Ratos Sprague-Dawley , Receptor de Fator de Crescimento Neural/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA