Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 256(Pt 2): 128428, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013086

RESUMO

Selenoneine (SEN) is a natural histidine derivative with radical-scavenging activity and shows higher antioxidant potential than its sulfur-containing isolog ergothioneine (EGT). Recently, the SEN biosynthetic pathway in Variovorax paradoxus was reported. Resembling EGT biosynthesis, the committed step of SEN synthesis is catalyzed by a nonheme Fe-dependent oxygenase termed SenA. This enzyme catalyzes oxidative carbon­selenium (C-Se) bond formation to conjugate N-α-trimethyl histidine (TMH) and selenosugar to yield selenoxide; the process parallels the EGT biosynthetic route, in which sulfoxide synthases known as EgtB members catalyze the conjugation of TMH and cysteine or γ-glutamylcysteine to afford sulfoxides. Here, we report the crystal structures of SenA and its complex with TMH and thioglucose (SGlc), an analog of selenoglucose (SeGlc) at high resolution. The overall structure of SenA adopts the archetypical fold of EgtB, which comprises a DinB-like domain and an FGE-like domain. While the TMH-binding site is highly conserved to that of EgtB, a various substrate-enzyme interaction network in the selenosugar-binding site of SenA features a number of water-mediated hydrogen bonds. The obtained structural information is beneficial for understanding the mechanism of SenA-mediated C-Se bond formation.


Assuntos
Ergotioneína , Compostos Organosselênicos , Histidina , Ferro , Oxigenases , Ergotioneína/química , Ergotioneína/metabolismo
3.
Plant Commun ; 1(3): 100047, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33367242

RESUMO

One of the hottest topics in plant hormone biology is the crosstalk mechanisms, whereby multiple classes of phytohormones interplay with each other through signaling networks. To better understand the roles of hormonal crosstalks in their complex regulatory networks, it is of high significance to investigate the spatial and temporal distributions of multiple -phytohormones simultaneously from one plant tissue sample. In this study, we develop a high-sensitivity and high-throughput method for the simultaneous quantitative analysis of 44 phytohormone compounds, covering currently known 10 major classes of phytohormones (strigolactones, brassinosteroids, gibberellins, auxin, abscisic acid, jasmonic acid, salicylic acid, cytokinins, ethylene, and polypeptide hormones [e.g., phytosulfokine]) from only 100 mg of plant sample. These compounds were grouped and purified separately with a tailored solid-phase extraction procedure based on their physicochemical properties and then analyzed by LC-MS/MS. The recoveries of our method ranged from 49.6% to 99.9% and the matrix effects from 61.8% to 102.5%, indicating that the overall sample pretreatment design resulted in good purification. The limits of quantitation (LOQs) of our method ranged from 0.06 to 1.29 pg/100 mg fresh weight and its precision was less than 13.4%, indicating high sensitivity and good reproducibility of the method. Tests of our method in different plant matrices demonstrated its wide applicability. Collectively, these advantages will make our method helpful in clarifying the crosstalk networks of phytohormones.


Assuntos
Química Analítica/normas , Cromatografia Líquida/normas , Eficiência , Guias como Assunto , Reguladores de Crescimento de Plantas/análise , Extração em Fase Sólida/normas , Espectrometria de Massas em Tandem/normas , Reprodutibilidade dos Testes
4.
Cell Host Microbe ; 27(4): 601-613.e7, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32272078

RESUMO

Plants deploy a variety of secondary metabolites to fend off pathogen attack. Although defense compounds are generally considered toxic to microbes, the exact mechanisms are often unknown. Here, we show that the Arabidopsis defense compound sulforaphane (SFN) functions primarily by inhibiting Pseudomonas syringae type III secretion system (TTSS) genes, which are essential for pathogenesis. Plants lacking the aliphatic glucosinolate pathway, which do not accumulate SFN, were unable to attenuate TTSS gene expression and exhibited increased susceptibility to P. syringae strains that cannot detoxify SFN. Chemoproteomics analyses showed that SFN covalently modified the cysteine at position 209 of HrpS, a key transcription factor controlling TTSS gene expression. Site-directed mutagenesis and functional analyses further confirmed that Cys209 was responsible for bacterial sensitivity to SFN in vitro and sensitivity to plant defenses conferred by the aliphatic glucosinolate pathway. Collectively, these results illustrate a previously unknown mechanism by which plants disarm a pathogenic bacterium.


Assuntos
Arabidopsis/metabolismo , Isotiocianatos/farmacologia , Pseudomonas syringae/efeitos dos fármacos , Sistemas de Secreção Tipo III/efeitos dos fármacos , Proteínas de Bactérias/efeitos dos fármacos , Cisteína/efeitos dos fármacos , Cisteína/metabolismo , Resistência à Doença , Regulação Bacteriana da Expressão Gênica , Isotiocianatos/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/metabolismo , Metabolismo Secundário , Sulfóxidos , Fatores de Transcrição/efeitos dos fármacos , Sistemas de Secreção Tipo III/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA