Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Genome Res ; 34(2): 189-200, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408788

RESUMO

Recent studies have revealed an unexplored population of long cell-free DNA (cfDNA) molecules in human plasma using long-read sequencing technologies. However, the biological properties of long cfDNA molecules (>500 bp) remain largely unknown. To this end, we have investigated the origins of long cfDNA molecules from different genomic elements. Analysis of plasma cfDNA using long-read sequencing reveals an uneven distribution of long molecules from across the genome. Long cfDNA molecules show overrepresentation in euchromatic regions of the genome, in sharp contrast to short DNA molecules. We observe a stronger relationship between the abundance of long molecules and mRNA gene expression levels, compared with short molecules (Pearson's r = 0.71 vs. -0.14). Moreover, long and short molecules show distinct fragmentation patterns surrounding CpG sites. Leveraging the cleavage preferences surrounding CpG sites, the combined cleavage ratios of long and short molecules can differentiate patients with hepatocellular carcinoma (HCC) from non-HCC subjects (AUC = 0.87). We also investigated knockout mice in which selected nuclease genes had been inactivated in comparison with wild-type mice. The proportion of long molecules originating from transcription start sites are lower in Dffb-deficient mice but higher in Dnase1l3-deficient mice compared with that of wild-type mice. This work thus provides new insights into the biological properties and potential clinical applications of long cfDNA molecules.


Assuntos
Carcinoma Hepatocelular , Ácidos Nucleicos Livres , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Ácidos Nucleicos Livres/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , DNA/genética , Genômica , Camundongos Knockout , Endodesoxirribonucleases/genética
2.
Clin Chem ; 69(2): 168-179, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322427

RESUMO

BACKGROUND: Recent studies using single molecule, real-time (SMRT) sequencing revealed a substantial population of analyzable long cell-free DNA (cfDNA) in plasma. Potential clinical utilities of such long cfDNA in pregnancy and cancer have been demonstrated. However, the performance of different long-read sequencing platforms for the analysis of long cfDNA remains unknown. METHODS: Size biases of SMRT sequencing by Pacific Biosciences (PacBio) and nanopore sequencing by Oxford Nanopore Technologies (ONT) were evaluated using artificial mixtures of sonicated human and mouse DNA of different sizes. cfDNA from plasma samples of pregnant women at different trimesters, hepatitis B carriers, and patients with hepatocellular carcinoma were sequenced with the 2 platforms. RESULTS: Both platforms showed biases to sequence longer (1500 bp vs 200 bp) DNA fragments, with PacBio showing a stronger bias (5-fold overrepresentation of long fragments vs 2-fold in ONT). Percentages of cfDNA fragments 500 bp were around 6-fold higher in PacBio compared with ONT. End motif profiles of cfDNA from PacBio and ONT were similar, yet exhibited platform-dependent patterns. Tissue-of-origin analysis based on single-molecule methylation patterns showed comparable performance on both platforms. CONCLUSIONS: SMRT sequencing generated data with higher percentages of long cfDNA compared with nanopore sequencing. Yet, a higher number of long cfDNA fragments eligible for the tissue-of-origin analysis could be obtained from nanopore sequencing due to its much higher throughput. When analyzing the size and end motif of cfDNA, one should be aware of the analytical characteristics and possible biases of the sequencing platforms being used.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Hepáticas , Sequenciamento por Nanoporos , Humanos , Feminino , Gravidez , Animais , Camundongos , Ácidos Nucleicos Livres/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , DNA/genética
3.
Proc Natl Acad Sci U S A ; 119(44): e2209852119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36288287

RESUMO

Cell-free DNA (cfDNA) fragmentation patterns contain important molecular information linked to tissues of origin. We explored the possibility of using fragmentation patterns to predict cytosine-phosphate-guanine (CpG) methylation of cfDNA, obviating the use of bisulfite treatment and associated risks of DNA degradation. This study investigated the cfDNA cleavage profile surrounding a CpG (i.e., within an 11-nucleotide [nt] window) to analyze cfDNA methylation. The cfDNA cleavage proportion across positions within the window appeared nonrandom and exhibited correlation with methylation status. The mean cleavage proportion was ∼twofold higher at the cytosine of methylated CpGs than unmethylated ones in healthy controls. In contrast, the mean cleavage proportion rapidly decreased at the 1-nt position immediately preceding methylated CpGs. Such differential cleavages resulted in a characteristic change in relative presentations of CGN and NCG motifs at 5' ends, where N represented any nucleotide. CGN/NCG motif ratios were correlated with methylation levels at tissue-specific methylated CpGs (e.g., placenta or liver) (Pearson's absolute r > 0.86). cfDNA cleavage profiles were thus informative for cfDNA methylation and tissue-of-origin analyses. Using CG-containing end motifs, we achieved an area under a receiver operating characteristic curve (AUC) of 0.98 in differentiating patients with and without hepatocellular carcinoma and enhanced the positive predictive value of nasopharyngeal carcinoma screening (from 19.6 to 26.8%). Furthermore, we elucidated the feasibility of using cfDNA cleavage patterns to deduce CpG methylation at single CpG resolution using a deep learning algorithm and achieved an AUC of 0.93. FRAGmentomics-based Methylation Analysis (FRAGMA) presents many possibilities for noninvasive prenatal, cancer, and organ transplantation assessment.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Hepáticas , Gravidez , Feminino , Humanos , Ácidos Nucleicos Livres/genética , Biomarcadores Tumorais/genética , Metilação de DNA , Neoplasias Hepáticas/genética , Epigênese Genética , DNA/genética , Citosina , Guanina , Nucleotídeos , Fosfatos
4.
Clin Chem ; 68(9): 1151-1163, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35587130

RESUMO

BACKGROUND: Analysis of circulating tumor DNA has become increasingly important as a tool for cancer care. However, the focus of previous studies has been on short fragments of DNA. Also, bisulfite sequencing, a conventional approach for methylation analysis, causes DNA degradation, which is not ideal for the assessment of long DNA properties and methylation patterns. This study attempted to overcome such obstacles by single-molecule sequencing. METHODS: Single-molecule real-time (SMRT) sequencing was used to sequence plasma DNA. We performed fragment size and direct methylation analysis for each molecule. A methylation score concerning single-molecule methylation patterns was used for cancer detection. RESULTS: A substantial proportion of plasma DNA was longer than 1 kb with a median of 16% in hepatocellular carcinoma (HCC) patients, hepatitis B virus carriers, and healthy individuals. The longest plasma DNA molecule in the HCC patients was 39.8 kb. Tumoral cell-free DNA (cfDNA) was generally shorter than nontumoral cfDNA. The longest tumoral cfDNA was 13.6 kb. Tumoral cfDNA had lower methylation levels compared with nontumoral cfDNA (median: 59.3% vs 76.9%). We developed and analyzed a metric reflecting single-molecule methylation patterns associated with cancer, named the HCC methylation score. HCC patients displayed significantly higher HCC methylation scores than those without HCC. Interestingly, compared to using short cfDNA (area under the receiver operating characteristic [ROC] curve, AUC: 0.75), the use of long cfDNA molecules greatly enhanced the discriminatory power (AUC: 0.91). CONCLUSIONS: A previously unidentified long cfDNA population was revealed in cancer patients. The presence and direct methylation analysis of these molecules open new possibilities for cancer liquid biopsy.


Assuntos
Carcinoma Hepatocelular , Ácidos Nucleicos Livres , Neoplasias Hepáticas , Biomarcadores Tumorais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Ácidos Nucleicos Livres/genética , DNA , Metilação de DNA , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética
5.
NPJ Genom Med ; 7(1): 14, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197474

RESUMO

Single-stranded ends of double-stranded DNA (jagged ends) are more abundant in urinary DNA than in plasma DNA. However, the lengths of jagged ends in urinary DNA remained undetermined, as a previous method used for urinary DNA jagged end sequencing analysis (Jag-seq) relied on unmethylation at CpG sites, limiting the resolution. Here, we performed high-resolution Jag-seq analysis using methylation at non-CpG cytosine sites, allowing determination of exact length of jagged ends. The urinary DNA bore longer jagged ends (~26-nt) than plasma DNA (~17-nt). The jagged end length distribution displayed 10-nt periodicities in urinary DNA, which were much less observable in plasma DNA. Amplitude of the 10-nt periodicities increased in patients with renal cell carcinoma. Heparin treatment of urine diminished the 10-nt periodicities. The urinary DNA jagged ends often extended into nucleosomal cores, suggesting potential interactions with histones. This study has thus advanced our knowledge of jagged ends in urine DNA.

6.
Clin Chem ; 67(11): 1492-1502, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34463757

RESUMO

BACKGROUND: Human plasma contains RNA transcripts released by multiple cell types within the body. Single-cell transcriptomic analysis allows the cellular origin of circulating RNA molecules to be elucidated at high resolution and has been successfully utilized in the pregnancy context. We explored the application of a similar approach to develop plasma RNA markers for cancer detection. METHODS: Single-cell RNA sequencing was performed to decipher transcriptomic profiles of single cells from hepatocellular carcinoma (HCC) samples. Cell-type-specific transcripts were identified and used for deducing the cell-type-specific gene signature (CELSIG) scores of plasma RNA from patients with and without HCC. RESULTS: Six major cell clusters were identified, including hepatocyte-like, cholangiocyte-like, myofibroblast, endothelial, lymphoid, and myeloid cell clusters based on 4 HCC tumor tissues as well as their paired adjacent nontumoral tissues. The CELSIG score of hepatocyte-like cells was significantly increased in preoperative plasma RNA samples of patients with HCC (n = 14) compared with non-HCC participants (n = 49). The CELSIG score of hepatocyte-like cells declined in plasma RNA samples of patients with HCC within 3 days after tumor resection. Compared with the discriminating power between patients with and without HCC using the abundance of ALB transcript in plasma [area under curve (AUC) 0.72)], an improved performance (AUC: 0.84) was observed using the CELSIG score. The hepatocyte-specific transcript markers in plasma RNA were further validated by ddPCR assays. The CELSIG scores of hepatocyte-like cell and cholangiocyte trended with patients' survival. CONCLUSIONS: The combination of single-cell transcriptomic analysis and plasma RNA sequencing represents an approach for the development of new noninvasive cancer markers.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores Tumorais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Humanos , Biópsia Líquida , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , RNA/genética , Análise de Sequência de RNA
7.
Elife ; 102021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33752803

RESUMO

We developed genetic-epigenetic tissue mapping (GETMap) to determine the tissue composition of plasma DNA carrying genetic variants not present in the constitutional genome through comparing their methylation profiles with relevant tissues. We validated this approach by showing that, in pregnant women, circulating DNA carrying fetal-specific alleles was entirely placenta-derived. In lung transplant recipients, we showed that, at 72 hr after transplantation, the lung contributed only a median of 17% to the plasma DNA carrying donor-specific alleles, and hematopoietic cells contributed a median of 78%. In hepatocellular cancer patients, the liver was identified as the predominant source of plasma DNA carrying tumor-specific mutations. In a pregnant woman with lymphoma, plasma DNA molecules carrying cancer mutations and fetal-specific alleles were accurately shown to be derived from the lymphocytes and placenta, respectively. Analysis of tissue origin for plasma DNA carrying genetic variants is potentially useful for noninvasive prenatal testing, transplantation monitoring, and cancer screening.


Assuntos
DNA/sangue , Epigenômica/métodos , Neoplasias/genética , Transplante de Órgãos/métodos , Diagnóstico Pré-Natal/métodos , Adulto , Idoso , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , DNA/genética , Metilação de DNA , DNA de Neoplasias/sangue , DNA de Neoplasias/genética , Epigênese Genética , Feminino , Feto/metabolismo , Variação Genética , Humanos , Neoplasias Hepáticas/genética , Linfoma/genética , Masculino , Pessoa de Meia-Idade , Neoplasias/sangue , Placenta/metabolismo , Gravidez , Análise de Sequência de DNA/métodos
8.
Clin Chem ; 67(4): 621-630, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33604652

RESUMO

BACKGROUND: Double-stranded DNA in plasma is known to carry single-stranded ends, called jagged ends. Plasma DNA jagged ends are biomarkers for pathophysiologic states such as pregnancy and cancer. It remains unknown whether urinary cell-free DNA (cfDNA) molecules have jagged ends. METHODS: Jagged ends of cfDNA were detected by incorporating unmethylated cytosines during a DNA end-repair process, followed by bisulfite sequencing. Incorporation of unmethylated cytosines during the repair of the jagged ends lowered the apparent methylation levels measured by bisulfite sequencing and were used to calculate a jagged end index. This approach is called jagged end analysis by sequencing. RESULTS: The jagged end index of urinary cfDNA was higher than that of plasma DNA. The jagged end index profile of plasma DNA displayed several strongly oscillating major peaks at intervals of approximately 165 bp (i.e., nucleosome size) and weakly oscillating minor peaks with periodicities of approximately 10 bp. In contrast, the urinary DNA jagged end index profile showed weakly oscillating major peaks but strongly oscillating minor peaks. The jagged end index was generally higher in nucleosomal linker DNA regions. Patients with bladder cancer (n = 46) had lower jagged end indexed of urinary DNA than participants without bladder cancer (n = 39). The area under the curve for differentiating between patients with and without bladder cancer was 0.83. CONCLUSIONS: Jagged ends represent a property of urinary cfDNA. The generation of jagged ends might be related to nucleosomal structures, with enrichment in linker DNA regions. Jagged ends of urinary DNA could potentially serve as a new biomarker for bladder cancer detection.


Assuntos
Ácidos Nucleicos Livres , Neoplasias da Bexiga Urinária , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , DNA/genética , Metilação de DNA , Estudos de Viabilidade , Feminino , Humanos , Nucleossomos , Gravidez , Análise de Sequência de DNA , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética
9.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495335

RESUMO

5-Methylcytosine (5mC) is an important type of epigenetic modification. Bisulfite sequencing (BS-seq) has limitations, such as severe DNA degradation. Using single molecule real-time sequencing, we developed a methodology to directly examine 5mC. This approach holistically examined kinetic signals of a DNA polymerase (including interpulse duration and pulse width) and sequence context for every nucleotide within a measurement window, termed the holistic kinetic (HK) model. The measurement window of each analyzed double-stranded DNA molecule comprised 21 nucleotides with a cytosine in a CpG site in the center. We used amplified DNA (unmethylated) and M.SssI-treated DNA (methylated) (M.SssI being a CpG methyltransferase) to train a convolutional neural network. The area under the curve for differentiating methylation states using such samples was up to 0.97. The sensitivity and specificity for genome-wide 5mC detection at single-base resolution reached 90% and 94%, respectively. The HK model was then tested on human-mouse hybrid fragments in which each member of the hybrid had a different methylation status. The model was also tested on human genomic DNA molecules extracted from various biological samples, such as buffy coat, placental, and tumoral tissues. The overall methylation levels deduced by the HK model were well correlated with those by BS-seq (r = 0.99; P < 0.0001) and allowed the measurement of allele-specific methylation patterns in imprinted genes. Taken together, this methodology has provided a system for simultaneous genome-wide genetic and epigenetic analyses.


Assuntos
Citosina/metabolismo , Metilação de DNA/genética , Análise de Sequência de DNA , Imagem Individual de Molécula , Animais , Sequência de Bases , DNA/metabolismo , Impressão Genômica , Humanos , Camundongos , Modelos Biológicos
10.
Genome Res ; 30(8): 1144-1153, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32801148

RESUMO

Cell-free DNA in plasma has been used for noninvasive prenatal testing and cancer liquid biopsy. The physical properties of cell-free DNA fragments in plasma, such as fragment sizes and ends, have attracted much recent interest, leading to the emerging field of cell-free DNA fragmentomics. However, one aspect of plasma DNA fragmentomics as to whether double-stranded plasma molecules might carry single-stranded ends, termed a jagged end in this study, remains underexplored. We have developed two approaches for investigating the presence of jagged ends in a plasma DNA pool. These approaches utilized DNA end repair to introduce differential methylation signals between the original sequence and the jagged ends, depending on whether unmethylated or methylated cytosines were used in the DNA end-repair procedure. The majority of plasma DNA molecules (87.8%) were found to bear jagged ends. The jaggedness varied according to plasma DNA fragment sizes and appeared to be in association with nucleosomal patterns. In the plasma of pregnant women, the jaggedness of fetal DNA molecules was higher than that of the maternal counterparts. The jaggedness of plasma DNA correlated with the fetal DNA fraction. Similarly, in the plasma of cancer patients, tumor-derived DNA molecules in patients with hepatocellular carcinoma showed an elevated jaggedness compared with nontumoral DNA. In mouse models, knocking out of the Dnase1 gene reduced jaggedness, whereas knocking out of the Dnase1l3 gene enhanced jaggedness. Hence, plasma DNA jagged ends represent an intrinsic property of plasma DNA and provide a link between nuclease activities and the fragmentation of plasma DNA.


Assuntos
Ácidos Nucleicos Livres/sangue , Fragmentação do DNA , Metilação de DNA/genética , DNA/sangue , DNA/genética , Animais , Carcinoma Hepatocelular/genética , Ácidos Nucleicos Livres/genética , Reparo do DNA por Junção de Extremidades/genética , Endodesoxirribonucleases/genética , Feminino , Humanos , Neoplasias Hepáticas/genética , Camundongos , Camundongos Knockout , Nucleossomos/genética , Gravidez
11.
Clin Chem ; 66(4): 598-605, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191318

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is strongly associated with Epstein-Barr virus (EBV) infection. Plasma EBV DNA is a validated screening tool for NPC. In screening, there are some individuals who do not have NPC but carry EBV DNA in plasma. Currently it is not known from screening if there may be any genotypic differences in EBV isolates from NPC and non-NPC subjects. Also, low concentrations of EBV DNA in plasma could pose challenge to such EBV genotypic analysis through plasma DNA sequencing. METHODS: In a training dataset comprised of plasma DNA sequencing data of NPC and non-NPC subjects, we studied the difference in the EBV single nucleotide variant (SNV) profiles between the two groups. The most differentiating SNVs across the EBV genome were identified. We proposed an NPC risk score to be derived from the genotypic patterns over these SNV sites. We subsequently analyzed the NPC risk scores in a testing set. RESULTS: A total of 661 significant SNVs across the EBV genome were identified from the training set. In the testing set, NPC plasma samples were shown to have high NPC risk scores, which suggested the presence of NPC-associated EBV SNV profiles. Among the non-NPC samples, there was a wide range of NPC risk scores. These results support the presence of diverse SNV profiles of EBV isolates from non-NPC subjects. CONCLUSION: EBV genotypic analysis is feasible through plasma DNA sequencing. The NPC risk score may be used to inform the cancer risk based on the EBV genome-wide SNV profile.


Assuntos
DNA Viral/sangue , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Carcinoma Nasofaríngeo/virologia , Infecções por Vírus Epstein-Barr/sangue , Infecções por Vírus Epstein-Barr/complicações , Genoma Viral , Genótipo , Humanos , Modelos Biológicos , Carcinoma Nasofaríngeo/sangue , Carcinoma Nasofaríngeo/etiologia , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Análise de Sequência de DNA
12.
Cancer Discov ; 10(5): 664-673, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32111602

RESUMO

Plasma DNA fragmentomics is an emerging area of research covering plasma DNA sizes, end points, and nucleosome footprints. In the present study, we found a significant increase in the diversity of plasma DNA end motifs in patients with hepatocellular carcinoma (HCC). Compared with patients without HCC, patients with HCC showed a preferential pattern of 4-mer end motifs. In particular, the abundance of plasma DNA motif CCCA was much lower in patients with HCC than in subjects without HCC. The aberrant end motifs were also observed in patients with other cancer types, including colorectal cancer, lung cancer, nasopharyngeal carcinoma, and head and neck squamous cell carcinoma. We further observed that the profile of plasma DNA end motifs originating from the same organ, such as the liver, placenta, and hematopoietic cells, generally clustered together. The profile of end motifs may therefore serve as a class of biomarkers for liquid biopsy in oncology, noninvasive prenatal testing, and transplantation monitoring. SIGNIFICANCE: Plasma DNA molecules originating from the liver, HCC and other cancers, placenta, and hematopoietic cells each harbor a set of characteristic plasma DNA end motifs. Such markers carry tissue-of-origin information and represent a new class of biomarkers in the nascent field of fragmentomics.This article is highlighted in the In This Issue feature, p. 627.


Assuntos
DNA/sangue , Neoplasias Hepáticas/genética , Transplante de Fígado/métodos , Feminino , Humanos , Gravidez
13.
Nat Commun ; 10(1): 3256, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332191

RESUMO

Epstein-Barr virus (EBV) is associated with a number of diseases, including malignancies. Currently, it is not known whether patients with different EBV-associated diseases have different methylation profiles of circulating EBV DNA. Through whole-genome methylation analysis of plasma samples from patients with nasopharyngeal carcinoma (NPC), EBV-associated lymphoma and infectious mononucleosis, we demonstrate that EBV DNA methylation profiles exhibit a disease-associated pattern. This observation implies a significant potential for the development of methylation analysis of plasma EBV DNA for NPC diagnostics. We further analyse the plasma EBV DNA methylome of NPC and non-NPC subjects from a prospective screening cohort. Plasma EBV DNA fragments demonstrate differential methylation patterns between NPC and non-NPC subjects. Combining such differential methylation patterns with the fractional concentration (count) and size of plasma EBV DNA, population screening of NPC is performed with an improved positive predictive value of 35.1%, compared to a count- and size-based only protocol.


Assuntos
Metilação de DNA , DNA Viral/genética , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4/genética , Adulto , DNA Viral/sangue , Infecções por Vírus Epstein-Barr/sangue , Infecções por Vírus Epstein-Barr/virologia , Feminino , Herpesvirus Humano 4/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/sangue , Carcinoma Nasofaríngeo/complicações , Carcinoma Nasofaríngeo/diagnóstico , Neoplasias Nasofaríngeas/sangue , Neoplasias Nasofaríngeas/complicações , Neoplasias Nasofaríngeas/diagnóstico , Estudos Prospectivos
14.
Clin Chem ; 65(9): 1161-1170, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31263037

RESUMO

BACKGROUND: Cellular mitochondrial DNA (mtDNA) is organized as circular, covalently closed and double-stranded DNA. Studies have demonstrated the presence of short mtDNA fragments in plasma. It is not known whether circular mtDNA might concurrently exist with linear mtDNA in plasma. METHODS: We elucidated the topology of plasma mtDNA using restriction enzyme BfaI cleavage signatures on mtDNA fragment ends to differentiate linear and circular mtDNA. mtDNA fragments with both ends carrying BfaI cleavage signatures were defined as circular-derived mtDNA, whereas those with no cleavage signature or with 1 cleavage signature were defined as linear-derived mtDNA. An independent assay using exonuclease V to remove linear DNA followed by restriction enzyme MspI digestion was used for confirming the conclusions based on BfaI cleavage analysis. We analyzed the presence of BfaI cleavage signatures on plasma DNA ends in nonhematopoietically and hematopoietically derived DNA molecules by sequencing plasma DNA of patients with liver transplantation and bone marrow transplantation. RESULTS: Both linear and circular mtDNA coexisted in plasma. In patients with liver transplantation, donor-derived (i.e., liver) mtDNA molecules were mainly linear (median fraction, 91%; range, 75%-97%), whereas recipient-derived (i.e., hematopoietic) mtDNA molecules were mainly circular (median fraction, 88%; range, 77%-93%). The proportion of linear mtDNA was well correlated with liver DNA contribution in the plasma DNA pool (r = 0.83; P value = 0.0008). Consistent data were obtained from a bone marrow transplantation recipient in whom the donor-derived (i.e., hematopoietic) mtDNA molecules were predominantly circular. CONCLUSIONS: Linear and circular mtDNA molecules coexist in plasma and may have different tissue origins.


Assuntos
DNA Mitocondrial/sangue , Adulto , Transplante de Medula Óssea , DNA Mitocondrial/química , DNA Mitocondrial/genética , Desoxirribonucleases de Sítio Específico do Tipo II/química , Feminino , Humanos , Transplante de Fígado , Masculino , Conformação de Ácido Nucleico , Gravidez
15.
Genome Res ; 29(3): 418-427, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30808726

RESUMO

Cell-free DNA (cfDNA) in human plasma is a class of biomarkers with many current and potential future diagnostic applications. Recent studies have shown that cfDNA molecules are not randomly fragmented and possess information related to their tissues of origin. Pathologies causing death of cells from particular tissues result in perturbations in the relative distribution of DNA from the affected tissues. Such tissue-of-origin analysis is particularly useful in the development of liquid biopsies for cancer. It is therefore of value to accurately determine the relative contributions of the tissues to the plasma DNA pool in a simultaneous manner. In this work, we report that in open chromatin regions, cfDNA molecules show characteristic fragmentation patterns reflected by sequencing coverage imbalance and differentially phased fragment end signals. The latter refers to differences in the read densities of sequences corresponding to the orientation of the upstream and downstream ends of cfDNA molecules in relation to the reference genome. Such cfDNA fragmentation patterns preferentially occur in tissue-specific open chromatin regions where the corresponding tissues contributed DNA into the plasma. Quantitative analyses of such signals allow measurement of the relative contributions of various tissues toward the plasma DNA pool. These findings were validated by plasma DNA sequencing data obtained from pregnant women, organ transplantation recipients, and cancer patients. Orientation-aware plasma DNA fragmentation analysis therefore has potential diagnostic applications in noninvasive prenatal testing, organ transplantation monitoring, and cancer liquid biopsy.


Assuntos
Biomarcadores Tumorais/sangue , Ácidos Nucleicos Livres/genética , Cromatina/genética , Fragmentação do DNA , Biomarcadores Tumorais/normas , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/química , Cromatina/química , Humanos , Especificidade de Órgãos , Padrões de Referência
16.
Proc Natl Acad Sci U S A ; 116(2): 641-649, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30593563

RESUMO

Circulating DNA in plasma consists of short DNA fragments. The biological processes generating such fragments are not well understood. DNASE1L3 is a secreted DNASE1-like nuclease capable of digesting DNA in chromatin, and its absence causes anti-DNA responses and autoimmunity in humans and mice. We found that the deletion of Dnase1l3 in mice resulted in aberrations in the fragmentation of plasma DNA. Such aberrations included an increase in short DNA molecules below 120 bp, which was positively correlated with anti-DNA antibody levels. We also observed an increase in long, multinucleosomal DNA molecules and decreased frequencies of the most common end motifs found in plasma DNA. These aberrations were independent of anti-DNA response, suggesting that they represented a primary effect of DNASE1L3 loss. Pregnant Dnase1l3-/- mice carrying Dnase1l3+/- fetuses showed a partial restoration of normal frequencies of plasma DNA end motifs, suggesting that DNASE1L3 from Dnase1l3-proficient fetuses could enter maternal systemic circulation and affect both fetal and maternal DNA fragmentation in a systemic as well as local manner. However, the observed shortening of circulating fetal DNA relative to maternal DNA was not affected by the deletion of Dnase1l3 Collectively, our findings demonstrate that DNASE1L3 plays a role in circulating plasma DNA homeostasis by enhancing fragmentation and influencing end-motif frequencies. These results support a distinct role of DNASE1L3 as a regulator of the physical form and availability of cell-free DNA and may have important implications for the mechanism whereby this enzyme prevents autoimmunity.


Assuntos
Ácidos Nucleicos Livres/sangue , Fragmentação do DNA , DNA/sangue , Endodesoxirribonucleases/metabolismo , Motivos de Nucleotídeos , Animais , Ácidos Nucleicos Livres/genética , DNA/genética , Endodesoxirribonucleases/genética , Feminino , Feto/metabolismo , Deleção de Genes , Camundongos , Camundongos Knockout , Gravidez
17.
Proc Natl Acad Sci U S A ; 115(46): E10925-E10933, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30373822

RESUMO

Circulating tumor-derived cell-free DNA (ctDNA) analysis offers an attractive noninvasive means for detection and monitoring of cancers. Evidence for the presence of cancer is dependent on the ability to detect features in the peripheral circulation that are deemed as cancer-associated. We explored approaches to improve the chance of detecting the presence of cancer based on sequence information present on ctDNA molecules. We developed an approach to detect the total pool of somatic mutations. We then investigated if there existed a class of ctDNA signature in the form of preferred plasma DNA end coordinates. Cell-free DNA fragmentation is a nonrandom process. Using plasma samples obtained from liver transplant recipients, we showed that liver contributed cell-free DNA molecules ended more frequently at certain genomic coordinates than the nonliver-derived molecules. The abundance of plasma DNA molecules with these liver-associated ends correlated with the liver DNA fractions in the plasma samples. Studying the DNA end characteristics in plasma of patients with hepatocellular carcinoma and chronic hepatitis B, we showed that there were millions of tumor-associated plasma DNA end coordinates in the genome. Abundance of plasma DNA molecules with tumor-associated DNA ends correlated with the tumor DNA fractions even in plasma samples of hepatocellular carcinoma patients that were subjected to shallow-depth sequencing analysis. Plasma DNA end coordinates may therefore serve as hallmarks of ctDNA that could be sampled readily and, hence, may improve the cost-effectiveness of liquid biopsy assessment.


Assuntos
Carcinoma Hepatocelular/genética , DNA Tumoral Circulante/genética , Neoplasias Hepáticas/genética , Adulto , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/cirurgia , DNA Tumoral Circulante/sangue , DNA de Neoplasias/sangue , DNA de Neoplasias/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/cirurgia , Transplante de Fígado , Masculino , Pessoa de Meia-Idade , Mutação
18.
Proc Natl Acad Sci U S A ; 115(22): E5106-E5114, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29760053

RESUMO

Cell-free DNA in human plasma is nonrandomly fragmented and reflects genomewide nucleosomal organization. Previous studies had demonstrated tissue-specific preferred end sites in plasma DNA of pregnant women. In this study, we performed integrative analysis of preferred end sites with the size characteristics of plasma DNA fragments. We mined the preferred end sites in short and long plasma DNA molecules separately and found that these "size-tagged" ends showed improved accuracy in fetal DNA fraction estimation and enhanced noninvasive fetal trisomy 21 testing. Further analysis revealed that the fetal and maternal preferred ends were generated from different locations within the nucleosomal structure. Hence, fetal DNA was frequently cut within the nucleosome core while maternal DNA was mostly cut within the linker region. We further demonstrated that the nucleosome accessibility in placental cells was higher than that for white blood cells, which might explain the difference in the cutting positions and the shortness of fetal DNA in maternal plasma. Interestingly, short and long size-tagged ends were also observable in the plasma of nonpregnant healthy subjects and demonstrated size differences similar to those in the pregnant samples. Because the nonpregnant samples did not contain fetal DNA, the data suggested that the interrelationship of preferred DNA ends, chromatin accessibility, and plasma DNA size profile is likely a general one, extending beyond the context of pregnancy. Plasma DNA fragment end patterns have thus shed light on production mechanisms and show utility in future developments in plasma DNA-based noninvasive molecular diagnostics.


Assuntos
Ácidos Nucleicos Livres/sangue , Técnicas de Diagnóstico Molecular/métodos , Diagnóstico Pré-Natal/métodos , Estudos de Casos e Controles , Ácidos Nucleicos Livres/classificação , Feminino , Feto/fisiologia , Humanos , Biópsia Líquida , Nucleossomos/química , Gravidez
19.
Proc Natl Acad Sci U S A ; 113(50): E8159-E8168, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27799561

RESUMO

Plasma DNA obtained from a pregnant woman was sequenced to a depth of 270× haploid genome coverage. Comparing the maternal plasma DNA sequencing data with the parental genomic DNA data and using a series of bioinformatics filters, fetal de novo mutations were detected at a sensitivity of 85% and a positive predictive value of 74%. These results represent a 169-fold improvement in the positive predictive value over previous attempts. Improvements in the interpretation of the sequence information of every base position in the genome allowed us to interrogate the maternal inheritance of the fetus for 618,271 of 656,676 (94.2%) heterozygous SNPs within the maternal genome. The fetal genotype at each of these sites was deduced individually, unlike previously, where the inheritance was determined for a collection of sites within a haplotype. These results represent a 90-fold enhancement in the resolution in determining the fetus's maternal inheritance. Selected genomic locations were more likely to be found at the ends of plasma DNA molecules. We found that a subset of such preferred ends exhibited selectivity for fetal- or maternal-derived DNA in maternal plasma. The ratio of the number of maternal plasma DNA molecules with fetal preferred ends to those with maternal preferred ends showed a correlation with the fetal DNA fraction. Finally, this second generation approach for noninvasive fetal whole-genome analysis was validated in a pregnancy diagnosed with cardiofaciocutaneous syndrome with maternal plasma DNA sequenced to 195× coverage. The causative de novo BRAF mutation was successfully detected through the maternal plasma DNA analysis.


Assuntos
DNA/sangue , DNA/genética , Testes Genéticos/métodos , Gravidez/sangue , Gravidez/genética , Diagnóstico Pré-Natal/métodos , Biologia Computacional , Fragmentação do DNA , Análise Mutacional de DNA , Displasia Ectodérmica/genética , Fácies , Insuficiência de Crescimento/genética , Feminino , Feto , Genoma Humano , Cardiopatias Congênitas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Herança Materna , Herança Paterna , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
20.
Proc Natl Acad Sci U S A ; 112(40): E5503-12, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26392541

RESUMO

Plasma consists of DNA released from multiple tissues within the body. Using genome-wide bisulfite sequencing of plasma DNA and deconvolution of the sequencing data with reference to methylation profiles of different tissues, we developed a general approach for studying the major tissue contributors to the circulating DNA pool. We tested this method in pregnant women, patients with hepatocellular carcinoma, and subjects following bone marrow and liver transplantation. In most subjects, white blood cells were the predominant contributors to the circulating DNA pool. The placental contributions in the plasma of pregnant women correlated with the proportional contributions as revealed by fetal-specific genetic markers. The graft-derived contributions to the plasma in the transplant recipients correlated with those determined using donor-specific genetic markers. Patients with hepatocellular carcinoma showed elevated plasma DNA contributions from the liver, which correlated with measurements made using tumor-associated copy number aberrations. In hepatocellular carcinoma patients and in pregnant women exhibiting copy number aberrations in plasma, comparison of methylation deconvolution results using genomic regions with different copy number status pinpointed the tissue type responsible for the aberrations. In a pregnant woman diagnosed as having follicular lymphoma during pregnancy, methylation deconvolution indicated a grossly elevated contribution from B cells into the plasma DNA pool and localized B cells as the origin of the copy number aberrations observed in plasma. This method may serve as a powerful tool for assessing a wide range of physiological and pathological conditions based on the identification of perturbed proportional contributions of different tissues into plasma.


Assuntos
Carcinoma Hepatocelular/genética , Metilação de DNA , DNA/genética , Neoplasias Hepáticas/genética , Análise de Sequência de DNA/métodos , Transplante de Tecidos , Adulto , Algoritmos , Linfócitos B/metabolismo , Transplante de Medula Óssea , Carcinoma Hepatocelular/sangue , DNA/sangue , DNA/química , Variações do Número de Cópias de DNA/genética , Feminino , Feto/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/sangue , Transplante de Fígado , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Placenta/metabolismo , Gravidez , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA