Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38935057

RESUMO

Amidst the growing challenge of meeting global energy demands with conventional sources, self-powered devices offer promising solution. Flexible and stretchable electronics are pivotal in wearable technology, enhancing the scope and functionality of these devices. This study employs potassium sodium niobite-lithium antimonate (K0.5Na0.5NbO3-LiSbO3) nanoparticles as fillers in polyvinylidene fluoride (PVDF) to fabricate piezoelectric thin films. These films are integrated with fabric-based electrodes to develop high-performance, flexible self-powered sensors. The sensor comprises a fabric-based electrode with polypyrrole (PPy) coated on plain nylon fabric, a 0.93KNN-0.07LS/PVDF composite piezoelectric thin film, and a protective PET layer. Results demonstrate that the 0.93KNN-0.07LS/PVDF-PPy/nylon composite sensors exhibit a stable piezoelectric output. Under 6 Hz and 10 N excitation, the piezoelectric output reaches approximately 6.1 V upon pressing. Additionally, the device shows good linear sensitivity in the 2-20 N pressure range and produces clear, regular output waveforms under cyclic pressures of varying frequencies and amplitudes, indicating excellent response repeatability. Even after extensive bending, twisting, and 5000 pressing cycles, the sensors maintain considerable cyclic stability, demonstrating high durability. These tests collectively indicate that the developed sensors possess high sensitivity, flexibility, durability, stability, and significant self-powered potential. This research provides a reference for the next generation of textile-based electrodes and offers potential strategies for flexible, wearable applications.

2.
Exp Neurol ; 377: 114778, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38609045

RESUMO

Neuronal apoptosis is a common pathological change in early brain injury after subarachnoid hemorrhage (SAH), and it is closely associated with neurological deficits. According to previous research, p97 exhibits a remarkable anti-cardiomyocyte apoptosis effect. p97 is a critical molecule in the growth and development of the nervous system. However, it remains unknown whether p97 can exert an anti-neuronal apoptosis effect in SAH. In the present study, we examined the role of p97 in neuronal apoptosis induced after SAH and investigated the underlying mechanism. We established an in vivo SAH mice model and overexpressed the p97 protein through transfection of the mouse cerebral cortex. We analyzed the protective effect of p97 on neurons and evaluated short-term and long-term neurobehavior in mice after SAH. p97 was found to be significantly downregulated in the cerebral cortex of the affected side in mice after SAH. The site showing reduced p97 expression also exhibited a high level of neuronal apoptosis. Adeno-associated virus-mediated overexpression of p97 significantly reduced the extent of neuronal apoptosis, improved early and long-term neurological function, and repaired the neuronal damage in the long term. These neuroprotective effects were accompanied by enhanced proteasome function and inhibition of the integrated stress response (ISR) apoptotic pathway involving eIF2α/CHOP. The administration of the p97 inhibitor NMS-873 induced a contradictory effect. Subsequently, we observed that inhibiting the function of the proteasome with the proteasome inhibitor PS-341 blocked the anti-neuronal apoptosis effect of p97 and enhanced the activation of the ISR apoptotic pathway. However, the detrimental effects of NMS-873 and PS-341 in mice with SAH were mitigated by the administration of the ISR inhibitor ISRIB. These results suggest that p97 can promote neuronal survival and improve neurological function in mice after SAH. The anti-neuronal apoptosis effect of p97 is achieved by enhancing proteasome function and inhibiting the overactivation of the ISR apoptotic pathway.


Assuntos
Apoptose , Camundongos Endogâmicos C57BL , Neurônios , Complexo de Endopeptidases do Proteassoma , Hemorragia Subaracnóidea , Animais , Hemorragia Subaracnóidea/patologia , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/complicações , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Masculino , Modelos Animais de Doenças , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/efeitos dos fármacos
3.
Neural Regen Res ; 19(5): 1064-1071, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37862209

RESUMO

Subarachnoid hemorrhage is associated with high morbidity and mortality and lacks effective treatment. Pyroptosis is a crucial mechanism underlying early brain injury after subarachnoid hemorrhage. Previous studies have confirmed that tumor necrosis factor-stimulated gene-6 (TSG-6) can exert a neuroprotective effect by suppressing oxidative stress and apoptosis. However, no study to date has explored whether TSG-6 can alleviate pyroptosis in early brain injury after subarachnoid hemorrhage. In this study, a C57BL/6J mouse model of subarachnoid hemorrhage was established using the endovascular perforation method. Our results indicated that TSG-6 expression was predominantly detected in astrocytes, along with NLRC4 and gasdermin-D (GSDMD). The expression of NLRC4, GSDMD and its N-terminal domain (GSDMD-N), and cleaved caspase-1 was significantly enhanced after subarachnoid hemorrhage and accompanied by brain edema and neurological impairment. To explore how TSG-6 affects pyroptosis during early brain injury after subarachnoid hemorrhage, recombinant human TSG-6 or a siRNA targeting TSG-6 was injected into the cerebral ventricles. Exogenous TSG-6 administration downregulated the expression of NLRC4 and pyroptosis-associated proteins and alleviated brain edema and neurological deficits. Moreover, TSG-6 knockdown further increased the expression of NLRC4, which was accompanied by more severe astrocyte pyroptosis. In summary, our study revealed that TSG-6 provides neuroprotection against early brain injury after subarachnoid hemorrhage by suppressing NLRC4 inflammasome activation-induced astrocyte pyroptosis.

4.
Aging (Albany NY) ; 12(21): 21161-21185, 2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-33168786

RESUMO

Inflammation is known to play an important role in early brain injury (EBI) after subarachnoid hemorrhage (SAH). T cell immunoglobulin and mucin domain-3 (Tim-3) has emerged as a critical regulator of adaptive and innate immune responses, and has been identified to play a vital role in certain inflammatory diseases; The present study explored the effect of Tim-3 on inflammatory responses and detailed mechanism in EBI following SAH. We investigated the effects of Tim-3 on SAH models established by endovascular puncture method in Sprague-Dawley rats. The present studies revealed that SAH induced a significant inflammatory response and significantly increased Tim-3 expression. Tim-3-AAV administration aggravated neurocyte apoptosis, brain edema, blood-brain barrier permeability, and neurological dysfunction; significantly inhibited Nrf2 expression; and increased HMGB1 expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor alpha, interleukin (IL)-1 beta, IL-17, and IL-18. However, Tim-3 siRNA or NK252 administration abolished the pro-inflammatory effects of Tim-3. Our results indicate a function for Tim-3 as a molecular player that links neuroinflammation and brain damage after SAH. We reveal that Tim-3 overexpression deteriorates neuroinflammatory and neurocyte apoptosis after subarachnoid hemorrhage through the Nrf2/HMGB1 signaling pathway in rats.


Assuntos
Proteína HMGB1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/patologia , Receptores de Superfície Celular/metabolismo , Hemorragia Subaracnóidea/patologia , Animais , Apoptose , Inflamação/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Hemorragia Subaracnóidea/metabolismo
5.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 21(1): 16-20, 2004 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-15022454

RESUMO

In order to observe the growth, expansion and differentiation of the cultured bone marrow stromal cells (BMSC), we isolated the BMSC from adult SD rats and cultivated them with LIF and bFGF. Then, we cultured and induced the stem cells by using retinoic acid and the culture medium confected in our lab by ourselves. We found that the BMSC could expand and generate clones when they were cultured in vitro. These cells subcultured grew rapidly and differentiated into neuron-like cells and astrocyte-like cells. The results showed that BMSC have the abilities to self renew and differentiate, thus demonstrating the culture method we used is suitable for the culture of BMSC in vitro. The bone marrow stromal cell is not difficult to obtain; it is capable of expanding and differentiating in culture. If the culture condition is appropriate, it can differentiate into neuron and astrocyte. So, it is a kind of perfect seed cells.


Assuntos
Células da Medula Óssea/citologia , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Células Estromais/citologia , Actiemil/farmacologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Fator 2 de Crescimento de Fibroblastos/farmacologia , Neurônios/citologia , Projetos Piloto , Ratos , Ratos Sprague-Dawley , Células-Tronco/citologia , Células Estromais/efeitos dos fármacos , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA