Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Chin Clin Oncol ; 13(3): 33, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38859601

RESUMO

BACKGROUND: Breast cancer (BRCA) represents a significant health challenge for women globally, with refractory cases showing resistance to current therapeutic strategies. The discovery of novel molecular markers and therapeutic targets is critical for improving outcomes in these patients. The primary aim of this study is to elucidate the role of tumor protein D52 (TPD52) as a novel molecular marker and potential therapeutic target to improve outcomes for BRCA patients. METHODS: Using bioinformatics methods, we screened and evaluated the expression, prognosis, and associated mechanisms of TPD52 in BRCA. Two hundred and thirty-eight BRCA cases and 19 control cases were collected from Shanghai First Maternity and Infant Hospital, and the protein expression of TPD52 was detected by immunohistochemistry, and the correlation between TPD52 and the prognosis of BRCA was analyzed. RESULTS: The expression of TPD52 in BRCA tissues was significantly higher than that in the control (P<0.001), displaying a strong association with key clinical variables, concurrently indicating an unfavorable prognostic implication. The survival analysis revealed high TPD52 expression was an independent adverse prognostic factor for overall (P=0.008) and disease-specific survival (P=0.005). Gene set enrichment analysis showed that TPD52 negatively correlated with estradiol, AMP-activated protein kinase, and other responses. Immune infiltration analysis showed that TPD52 was associated with immune cell infiltration, Th-1/Th-2 cell balance, and immune defense cells such as dendritic and plasmacytoid dendritic cells. It is further found that high TPD52 expression is associated with progression-free and disease-free survival from the analysis of immunohistochemical data of the patients at our hospital. CONCLUSIONS: In summary, TPD52 may serve as an independent prognostic biomarker for BRCA, which may represent a promising novel therapeutic target, particularly for the refractory estrogen receptor-positive (ER+)/progesterone receptor-positive (PR+)/human epidermal growth factor receptor 2-positive (HER2+) BRCA cases that have failed endocrine therapy and targeted treatment.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Prognóstico , Biomarcadores Tumorais/metabolismo , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Receptores de Estrogênio/metabolismo , Receptor ErbB-2/metabolismo , Adulto , Receptores de Progesterona/metabolismo
2.
Angew Chem Int Ed Engl ; 63(25): e202401235, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38623716

RESUMO

Halide methyltransferases (HMTs) provide an effective way to regenerate S-adenosyl methionine (SAM) from S-adenosyl homocysteine and reactive electrophiles, such as methyl iodide (MeI) and methyl toluene sulfonate (MeOTs). As compared with MeI, the cost-effective unnatural substrate MeOTs can be accessed directly from cheap and abundant alcohols, but shows only limited reactivity in SAM production. In this study, we developed a dynamic cross-correlation network analysis (DCCNA) strategy for quickly identifying hot spots influencing the catalytic efficiency of the enzyme, and applied it to the evolution of HMT from Paraburkholderia xenovorans. Finally, the optimal mutant, M4 (V55T/C125S/L127T/L129P), exhibited remarkable improvement, with a specific activity of 4.08 U/mg towards MeOTs, representing an 82-fold increase as compared to the wild-type (WT) enzyme. Notably, M4 also demonstrated a positive impact on the catalytic ability with other methyl donors. The structural mechanism behind the enhanced enzyme activity was uncovered by molecular dynamics simulations. Our work not only contributes a promising biocatalyst for the regeneration of SAM, but also offers a strategy for efficient enzyme engineering.


Assuntos
Metiltransferases , Metiltransferases/metabolismo , Metiltransferases/química , Engenharia de Proteínas , Simulação de Dinâmica Molecular
3.
Nat Commun ; 15(1): 1611, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383543

RESUMO

We introduce a computational approach for the design of target-specific peptides. Our method integrates a Gated Recurrent Unit-based Variational Autoencoder with Rosetta FlexPepDock for peptide sequence generation and binding affinity assessment. Subsequently, molecular dynamics simulations are employed to narrow down the selection of peptides for experimental assays. We apply this computational strategy to design peptide inhibitors that specifically target ß-catenin and NF-κB essential modulator. Among the twelve ß-catenin inhibitors, six exhibit improved binding affinity compared to the parent peptide. Notably, the best C-terminal peptide binds ß-catenin with an IC50 of 0.010 ± 0.06 µM, which is 15-fold better than the parent peptide. For NF-κB essential modulator, two of the four tested peptides display substantially enhanced binding compared to the parent peptide. Collectively, this study underscores the successful integration of deep learning and structure-based modeling and simulation for target specific peptide design.


Assuntos
Aprendizado Profundo , Simulação de Dinâmica Molecular , beta Catenina/metabolismo , NF-kappa B/metabolismo , Ligação Proteica , Peptídeos/química
5.
Int. j. morphol ; 41(5): 1348-1356, oct. 2023.
Artigo em Inglês | LILACS | ID: biblio-1521029

RESUMO

SUMMARY: Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is highly expressed in various types of cancers including breast cancer. However, the role of AhR with its endogenous ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) on the progression of breast cancer remains poorly understood. We aimed to investigate cell proliferation and migration states in breast cancer after activating AhR with the endogenous ligand ITE. Breast cancer tissue was evaluated by cell lines, immunohistochemistry, reverse transcription-polymerase chain reaction, cell proliferation, flow cytometry, migration assays and western blot techniques. We found that AhR was widely expressed in breast cancer tissues and metastasis lymph node tissues, but not in normal tissues. The expression AhR was independent between the age, grades and TNM classifications for breast cancer tissues. ITE treatment significantly induced the activation of AhR in a time-dependent manner in both MCF-7 and T47D breast cancer cell lines. Meanwhile, ITE did not affect the cell migration but significantly suppressed the cell proliferation in estrogen receptor positive (ER+) MCF-7 andT47D cells, which probably attribute to the induction of cell cycle arrest in G1 phase and shortened S phase. Further mechanism study showed that ERK1/2 and AKT signaling were required for the activation of AhR in MCF-7 cells. These data suggest that AhR is a potential new target for treating patients with breast cancer. ITE may be more potentially used for therapeutic intervention for breast cancer with the kind of ER(+).


El receptor de hidrocarburo de arilo (AhR) es un factor de transcripción activado por ligando que se expresa en gran medida en varios tipos de cáncer, incluido el cáncer de mama. Sin embargo, el papel de AhR con su ligando endógeno 2- (1'H-indol-3'-carbonil)-tiazol-4-ácido carboxílico metil éster (ITE) en la progresión del cáncer de mama sigue siendo poco conocido. Nuestro objetivo fue investigar la proliferación celular y los estados de migración en el cáncer de mama después de activar AhR con el ligando endógeno ITE. El tejido de cáncer de mama se evaluó mediante líneas celulares, inmunohistoquímica, reacción en cadena de la polimerasa con transcriptasa inversa, proliferación celular, citometría de flujo, ensayos de migración y técnicas de transferencia Western. Descubrimos que AhR se expresó ampliamente en tejidos de cáncer de mama y en linfonodos con metástasis, pero no en tejidos normales. La expresión AhR fue independiente entre la edad, grados y clasificaciones TNM para tejidos de cáncer de mama. El tratamiento con ITE indujo significativamente la activación de AhR de manera dependiente del tiempo en las líneas celulares de cancer de mama MCF-7 y T47D. Mientras tanto, ITE no afectó la migración celular, pero suprimió significativamente la proliferación celular en células MCF-7 y T47D con receptor de estrógeno positivo (ER+), lo que probablemente se atribuye a la inducción de la detención del ciclo celular en la fase G1 y la fase S acortada. Un estudio adicional del mecanismo mostró que las señales de ERK1/2 y AKT eran necesarias para la activación de AhR en las células MCF-7. Estos datos sugieren que AhR es un nuevo objetivo potencial para el tratamiento de pacientes con cáncer de mama. ITE puede ser utilizado más potencialmente en la intervención terapéutica para el cáncer de mama con el tipo de ER (+).


Assuntos
Humanos , Feminino , Tiazóis/administração & dosagem , Neoplasias da Mama/patologia , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Indóis/administração & dosagem , Tiazóis/farmacologia , Imuno-Histoquímica , Receptores de Estrogênio , Western Blotting , Citocromo P-450 CYP1A1/genética , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Migração Celular , Citocromo P-450 CYP1B1/genética , Citometria de Fluxo , Indóis/farmacologia
6.
Res Sq ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37502961

RESUMO

The uptake of Ca2+ into and extrusion of calcium from the mitochondrial matrix, regulated by the mitochondrial Ca2+ uniporter (MCU), is a fundamental biological process that has crucial impacts on cellular metabolism, signaling, growth and survival. Herein, we report that the embryonic lethality of Mcu-deficient mice is fully rescued by orally supplementing ferroptosis inhibitor lipophilic antioxidant vitamin E and ubiquinol. Mechanistically, we found MCU promotes acetyl-CoA-mediated GPX4 acetylation at K90 residue, and K90R mutation impaired the GPX4 enzymatic activity, a step that is crucial for ferroptosis. Structural analysis supports the possibility that GPX4 K90R mutation alters the conformational state of the molecule, resulting in disruption of a salt bridge formation with D23, which was confirmed by mutagenesis studies. Finally, we report that deletion of MCU in cancer cells caused a marked reduction in tumor growth in multiple cancer models. In summary, our study provides a first direct link between mitochondrial calcium level and sustained GPX4 enzymatic activity to regulate ferroptosis, which consequently protects cancer cells from ferroptosis.

7.
J Nat Prod ; 86(6): 1411-1419, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37216676

RESUMO

A cardiac glycoside epoxide, (-)-cryptanoside A (1), was isolated from the stems of Cryptolepis dubia collected in Laos, for which the complete structure was confirmed by analysis of its spectroscopic and single-crystal X-ray diffraction data, using copper radiation at a low temperature. This cardiac glycoside epoxide exhibited potent cytotoxicity against several human cancer cell lines tested, including HT-29 colon, MDA-MB-231 breast, OVCAR3 and OVCAR5 ovarian cancer, and MDA-MB-435 melanoma cells, with the IC50 values found to be in the range 0.1-0.5 µM, which is comparable with that observed for digoxin. However, it exhibited less potent activity (IC50 1.1 µM) against FT194 benign/nonmalignant human fallopian tube secretory epithelial cells when compared with digoxin (IC50 0.16 µM), indicating its more selective activity toward human cancer versus benign/nonmalignant cells. (-)-Cryptanoside A (1) also inhibited Na+/K+-ATPase activity and increased the expression of Akt and the p65 subunit of NF-κB but did not show any effects on the expression of PI3K. A molecular docking profile showed that (-)-cryptanoside A (1) binds to Na+/K+-ATPase, and thus 1 may directly target Na+/K+-ATPase to mediate its cancer cell cytotoxicity.


Assuntos
Antineoplásicos , Glicosídeos Cardíacos , Neoplasias Ovarianas , Humanos , Feminino , Glicosídeos Cardíacos/farmacologia , Glicosídeos Cardíacos/química , Cryptolepis/metabolismo , Apoptose , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , ATPase Trocadora de Sódio-Potássio , Antineoplásicos/farmacologia , Digoxina/farmacologia
8.
J Chem Inf Model ; 63(4): 1196-1207, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36757760

RESUMO

Pentameric ligand-gated ion channels play an important role in mediating fast neurotransmissions. As a member of this receptor family, cation-selective 5-HT3 receptors are a clinical target for treating nausea and vomiting associated with chemotherapy and radiation therapy (Thompson and Lummis, 2006). Multiple cryo-electron microscopy (cryo-EM) structures of 5-HT3 receptors have been determined in distinct functional states (e.g., open, closed, etc.) (Basak et al., 2018; Basak et al., 2018; Polovinkin et al., 2018; Zhang et al., 2015). However, recent work has shown that the transmembrane pores of the open 5-HT3 receptor structures rapidly collapse and become artificially asymmetric in molecular dynamics (MD) simulations. To avoid this hydrophobic collapse, Dämgen and Biggin developed an equilibration protocol that led to a stable open state structure of the glycine receptor in MD simulations (Dämgen and Biggin, 2020). However, the protocol failed to yield open-like structures of the 5-HT3 receptor in our simulations. Here, we present a refined equilibration protocol that involves the rearrangement of the transmembrane helices to achieve stable open state structures of the 5-HT3 receptor that allow both water and ion permeation through the channel. Notably, channel gating is mediated through collective movement of the transmembrane helices, involving not only pore lining M2 helices but also their cross-talk with the adjacent M1 and M3 helices. Thus, the successful application of our refined equilibration protocol underscores the importance of the conformational coupling between the transmembrane helices in stabilizing open-like structures of the 5-HT3 receptor.


Assuntos
Simulação de Dinâmica Molecular , Serotonina , Serotonina/química , Serotonina/metabolismo , Microscopia Crioeletrônica , Estrutura Secundária de Proteína , Transporte de Íons , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/metabolismo
9.
Protein Sci ; 31(12): e4499, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36335585

RESUMO

As a key regulator for hormone activity, human aldo-keto reductase family 1 member C3 (AKR1C3) plays crucial roles in the occurrence of various hormone-dependent or independent malignancies. It is a promising target for treating castration-resistant prostate cancer (CRPC). However, the development of AKR1C3 specific inhibitors remains challenging due to the high sequence similarity to its isoform AKR1C2. Here, we performed a combined in silico study to illuminate the inhibitory preference of 3-(3,4-dihydroisoquinolin-2(1H)-ylsulfonyl)benzoic acids for AKR1C3 over AKR1C2, of which compound 38 can achieve up to 5000-fold anti-AKR1C3 selectivity. Our umbrella sampling (US) simulations together with end-point binding free energy calculation MM/GBSA uncover that the high inhibition selectivity originates from the different binding modes, namely "Inward" and "Outward," of this compound series in AKR1C3 and AKR1C2, respectively. In AKR1C3/38, the tetrahydroquinoline moiety of 38 is accommodated inside the SP1 pocket and interacts favorably with surrounding residues, while, in AKR1C2/38, the SP1 pocket is too small to hold the bulky tetrahydroquinoline group that instead moves out of the pocket with 38 transitioning from an "Inward" to an "Outward" state. Further 3D-QSAR and energy decomposition analyses suggest that SP1 in AKR1C3 prefers to bind with a rigid bicyclic moiety and the modification of the R3 group has important implication for the compound's activity. This work is the first attempt to elucidate the selectivity mechanism of inhibitors toward AKR1C3 at the atomic level, which is anticipated to propel the development of next-generation AKR1C3 inhibitors with enhanced efficacy and reduced "off-target" effect for CRPC therapy.


Assuntos
Hidroxiprostaglandina Desidrogenases , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Hidroxiprostaglandina Desidrogenases/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , Benzoatos/química , Simulação por Computador , Isoformas de Proteínas , Hormônios
10.
Biomaterials ; 291: 121863, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36356474

RESUMO

In optical devices such as camera or microscope, an aperture is used to regulate light intensity for imaging. Here we report the discovery and construction of a durable bio-aperture at nanometerscale that can regulate current at the pico-ampere scale. The nano-aperture is made of 12 identical protein subunits that form a 3.6-nm channel with a shutter and "one-way traffic" property. This shutter responds to electrical potential differences across the aperture and can be turned off for double stranded DNA translocation. This voltage enables directional control, and three-step regulation for opening and closing. The nano-aperture was constructed in vitro and purified into homogeneity. The aperture was stable at pH2-12, and a temperature of -85C-60C. When an electrical potential was held, three reproducible discrete steps of current flowing through the channel were recorded. Each step reduced 32% of the channel dimension evident by the reduction of the measured current flowing through the aperture. The current change is due to the change of the resistance of aperture size. The transition between these three distinct steps and the direction of the current was controlled via the polarity of the voltage applied across the aperture. When the C-terminal of the aperture was fused to an antigen, the antibody and antigen interaction resulted in a 32% reduction of the channel size. This phenomenon was used for disease diagnosis since the incubation of the antigen-nano-aperture with a specific cancer antibody resulted in a change of 32% of current. The purified truncated cone-shape aperture automatically self-assembled efficiently into a sheet of the tetragonal array via head-to-tail self-interaction. The nano-aperture discovery with a controllable shutter, discrete-step current regulation, formation of tetragonal sheet, and one-way current traffic provides a nanoscale electrical circuit rectifier for nanodevices and disease diagnosis.


Assuntos
Biomimética , DNA
11.
J Phys Chem B ; 126(43): 8669-8679, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36260486

RESUMO

Biomolecular binding relies on specific attractive interactions between two partner molecules, including electrostatics, dispersion, hydrophobicity, and solvation. Assessing the contributions of electrostatic interactions to binding is key to the understanding of ligand binding mechanisms and the design of improved biomolecular binders. For example, nicotine is a well-known agonist of nicotinic acetylcholine receptors (nAChRs), but the molecular mechanisms for the differential action of nicotine on brain and muscle nAChRs remain elusive. In this work, we have chosen the acetylcholine binding protein (AChBP) in complex with nicotine as a model system to interrogate the electrostatic contributions to nicotine binding. Our absolute binding free energy simulations confirm that nicotine binds AChBP predominantly in its protonated (charged) form. By comparing energetic contributions from decomposed interactions for either neutral or charged nicotine, our calculations shed light on the nature of the binding of nicotine to the AChBP. The preferred binding of charged nicotine over neutral nicotine originates from its stronger electrostatic interactions with AChBP, a cation-π interaction to a tryptophan residue and a hydrogen bond between nicotine and the backbone carbonyl of the tryptophan, whereas the major force driving the binding process appears to be van der Waals interactions. The various nonelectrostatic terms can also indirectly modulate the electrostatic interactions through fine-tuning the binding pose of the ligand in the binding site, providing an explanation of why the binding specificity of nicotine to the brain versus muscle nAChRs is driven by electrostatic interaction, given that the immediate binding site residues, including the key tryptophan residue, are identical in the two receptors.


Assuntos
Nicotina , Receptores Nicotínicos , Nicotina/química , Nicotina/metabolismo , Acetilcolina/química , Ligantes , Proteínas de Transporte/química , Eletricidade Estática , Triptofano/química , Modelos Moleculares , Receptores Nicotínicos/química , Sítios de Ligação , Ligação Proteica
12.
Adv Mater ; 34(47): e2207486, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36121735

RESUMO

Toll-like receptors (TLRs) and CD40-related signaling pathways represent critical bridges between innate and adaptive immune responses. Here, an immunotherapy regimen that enables co-stimulation of TLR7/8- and CD40-mediated pathways is developed. TLR7/8 agonist resiquimod (R848) derived amino lipids, RAL1 and RAL2, are synthesized and formulated into RAL-derived lipid nanoparticles (RAL-LNPs). The RAL2-LNPs show efficient CD40 mRNA delivery to DCs both in vitro (90.8 ± 2.7%) and in vivo (61.3 ± 16.4%). When combined with agonistic anti-CD40 antibody, this approach can produce effective antitumor activities in mouse melanoma tumor models, thereby suppressing tumor growth, prolonging mouse survival, and establishing antitumor memory immunity. Overall, RAL2-LNPs provide a novel platform toward cancer immunotherapy by integrating innate and adaptive immunity.


Assuntos
Melanoma , Nanopartículas , Receptor 7 Toll-Like , Animais , Camundongos , Adjuvantes Imunológicos , Antígenos CD40 , Imunoterapia , Camundongos Endogâmicos C57BL , Receptor 7 Toll-Like/agonistas , Receptores Toll-Like , Melanoma/tratamento farmacológico
13.
Nat Metab ; 4(5): 575-588, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35534729

RESUMO

Tumorigenesis is associated with elevated glucose and glutamine consumption, but how cancer cells can sense their levels to activate lipid synthesis is unknown. Here, we reveal that ammonia, released from glutamine, promotes lipogenesis via activation of sterol regulatory element-binding proteins (SREBPs), endoplasmic reticulum-bound transcription factors that play a central role in lipid metabolism. Ammonia activates the dissociation of glucose-regulated, N-glycosylated SREBP-cleavage-activating protein (SCAP) from insulin-inducible gene protein (Insig), an endoplasmic reticulum-retention protein, leading to SREBP translocation and lipogenic gene expression. Notably, 25-hydroxycholesterol blocks ammonia to access its binding site on SCAP. Mutating aspartate D428 to alanine prevents ammonia binding to SCAP, abolishes SREBP-1 activation and suppresses tumour growth. Our study characterizes the unknown role, opposite to sterols, of ammonia as a key activator that stimulates SCAP-Insig dissociation and SREBP-1 activation to promote tumour growth and demonstrates that SCAP is a critical sensor of glutamine, glucose and sterol levels to precisely control lipid synthesis.


Assuntos
Lipogênese , Neoplasias , Amônia , Glucose , Glutamina/metabolismo , Humanos , Insulina/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Esteróis/metabolismo
14.
Sensors (Basel) ; 21(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34770667

RESUMO

Different from traditional redundant manipulators, the redundant manipulators used in the surgical environment require the end effector (EE) to have high pose (position and orientation) accuracy to ensure the smooth progress of the operation. When analyzing the inverse kinematics (IK) of traditional redundant manipulators, gradient-projection method (GPM) and weighted least-norm (WLN) method are commonly used methods to avoid joint position limits. However, for the traditional GPM and WLN method, when joints are close to their limits, they stop moving, which greatly reduces the accuracy of the IK solution. When robotic manipulators enter a singular region, although traditional damped least-squares (DLS) algorithms are used to handle singularities effectively, motion errors of the EE will be introduced. Furthermore, selecting singular region through trial and error may cause some joint velocities exceed their corresponding limits. More importantly, traditional DLS algorithms cannot guide robotic manipulators away from singular regions. Inspired by the merits of GPM, WLN, and DLS methods, an improved weighted gradient projection method (IWGPM) is proposed to solve the IK problem of redundant manipulators used in the surgical environment with avoiding joint position limits and singularities. The weighted matrix of the WLN method and the damping factor of the DLS algorithm have been improved, and a joint limit repulsive potential field function and singular repulsive potential field function belong to the null space are introduced to completely keep joints away from the damping interval and redundant manipulators away from the unsafe region. To verify the validity of the proposed IWGPM, simulations on a 7 degree of freedom (DOF) redundant manipulator used in laparoscopic surgery indicate that the proposed method can not only achieve higher accuracy IK solution but also avoid joint position limits and singularities effectively by comparing them with the results of the traditional GPM and WLN method, respectively. Furthermore, based on the proposed IWGPM, simulation tests in two cases show that joint position limits have a great impact on the orientation accuracy, and singular potential energy function has a great impact on the position accuracy.


Assuntos
Movimento , Robótica , Algoritmos , Fenômenos Biomecânicos , Movimento (Física)
15.
ACS Pharmacol Transl Sci ; 4(5): 1628-1638, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34661079

RESUMO

The bromodomain and extra-terminal (BET) domain family of proteins, which include its prototypical member Brd4, is implicated in a variety of cancers and viral infections due to their interaction with cellular and viral proteins. BET proteins contain two bromodomains, a common protein motif that selectively binds acetylated lysine on histones. However, they are structurally distinct from other bromodomain-containing proteins because they encode a unique C-terminal extra-terminal (ET) domain that is important for the protein-protein interactions including jumonji C-domain-containing protein 6 (JMJD6) and histone-lysine N-methyltransferase NSD3 (NSD3). Brd4 functions primarily during transcription as a passive scaffold linking cellular and viral proteins to chromatin. The rapid development of clinical inhibitors targeting Brd4 highlights the importance of this protein as an anticancer target. Current therapeutic approaches focus on the development of small molecule acetylated lysine mimics of histone marks that block the ability of the bromodomains to bind their chromatin marks. Thus far, bromodomain-targeted agents have shown dose-limiting toxicities due to off-target effects on other bromodomain-containing proteins. Here, we exploited a viral-host protein interaction interface to design peptides for the disruption of BET protein function. A murine leukemia virus (MLV) integrase-derived peptide (ET binding motif, EBM) and its shorter minimal binding motif (pentapeptide LKIRL) were sufficient to directly bind the Brd4 ET domain and reduce cellular proliferation of an acute myeloid leukemia cell line. Using computational and biochemical approaches, we identified the minimal essential contacts between EBM and LKIRL peptides and the Brd4 ET domain. Our findings provide a structural foundation for inhibiting BET/Brd4-mediated cancers by targeting the ET domain with small peptide-based inhibitors.

16.
Phys Chem Chem Phys ; 23(36): 20634-20644, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34515265

RESUMO

Systemic light chain amyloidosis (AL) causes a malignant pathology associated with the formation of amyloid fibrils that deposit in human organs and tissues, leading to dysfunction and severe morbidity. Amyloid fibril-reactive antibodies have been used to remove amyloid from organs and are effective in restoring organ function in patients with AL amyloidosis. Unfortunately, antibodies do not bind amyloid in all AL patients, nor do they efficiently bind many other forms of amyloid. Recently, a synthetic peptide P62 was developed, which binds many forms of systemic amyloidosis and can be further modified and fused to a high-affinity peptide epitope to expand its utility as a novel amyloid immunotherapeutic. However, the molecular-level details of P62-fibril binding mechanisms, critical for future peptide design, are unclear. Here, we combine protein docking, all-atom molecular dynamics simulation and umbrella sampling to study the dynamical interactions between peptide P62 and a structural model of the λ light chain in systemic amyloidosis. We found that P62 only binds to the canonical interface of the fibril where the peptide inserts into the fibril groove and its two termini are more mobile than the helix core. Our results also revealed an important role of the lysine residues of P62 in the binding process by forming initial contacts with aspartic acids on the fibril surface. Collectively, our computational study provided molecular-level insights into the binding mechanism between an amyloid fibril model and peptide P62, which could lay a foundation for rational design of peptides for improved amyloid diagnosis and immunotherapy.


Assuntos
Proteínas Amiloidogênicas/química , Peptídeos/química , Humanos , Simulação de Dinâmica Molecular , Peptídeos/síntese química , Ligação Proteica , Conformação Proteica
17.
Molecules ; 26(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34577146

RESUMO

Docking profiles for (+)-strebloside, a cytotoxic cardiac glycoside identified from Streblus asper, and some of its derivatives and Na+/K+-ATPase have been investigated. In addition, binding between (+)-strebloside and its aglycone, strophanthidin, and several of their other molecular targets, including FIH-1, HDAC, KEAP1 and MDM2 (negative regulators of Nrf2 and p53, respectively), NF-κB, and PI3K and Akt1, have been inspected and compared with those for digoxin and its aglycone, digoxigenin. The results showed that (+)-strebloside, digoxin, and their aglycones bind to KEAP1 and MDM2, while (+)-strebloside, strophanthidin, and digoxigenin dock to the active pocket of PI3K, and (+)-strebloside and digoxin interact with FIH-1. Thus, these cardiac glycosides could directly target HIF-1, Nrf2, and p53 protein-protein interactions, Na+/K+-ATPase, and PI3K to mediate their antitumor activity. Overall, (+)-strebloside seems more promising than digoxin for the development of potential anticancer agents.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch , Animais , Glicosídeos Cardíacos , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
18.
Molecules ; 26(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208576

RESUMO

Digoxin is a cardiac glycoside long used to treat congestive heart failure and found recently to show antitumor potential. The hydroxy groups connected at the C-12, C-14, and C-3'a positions; the C-17 unsaturated lactone unit; the conformation of the steroid core; and the C-3 saccharide moiety have been demonstrated as being important for digoxin's cytotoxicity and interactions with Na+/K+-ATPase. The docking profiles for digoxin and several derivatives and Na+/K+-ATPase were investigated; an additional small Asn130 side pocket was revealed, which could be useful in the design of novel digoxin-like antitumor agents. In addition, the docking scores for digoxin and its derivatives were found to correlate with their cytotoxicity, indicating a potential use of these values in the prediction of the cancer cell cytotoxicity of other cardiac glycosides. Moreover, in these docking studies, digoxin was found to bind to FIH-1 and NF-κB but not HDAC, IAP, and PI3K, suggesting that this cardiac glycoside directly targets FIH-1, Na+/K+-ATPase, and NF-κB to mediate its antitumor potential. Differentially, digoxigenin, the aglycon of digoxin, binds to HDAC and PI3K, but not FIH-1, IAP, Na+/K+-ATPase, and NF-κB, indicating that this compound may target tumor autophagy and metabolism to mediate its antitumor propensity.


Assuntos
Digoxina/química , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/ultraestrutura , Animais , Antineoplásicos , Glicosídeos Cardíacos/farmacologia , Proliferação de Células/efeitos dos fármacos , Digoxina/farmacologia , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico
19.
J Chem Inf Model ; 61(7): 3477-3494, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34165949

RESUMO

An androgen receptor (AR) is an intensively studied treatment target for castration-resistant prostate cancer that is irresponsive to conventional antiandrogen therapeutics. Binding function 3 (BF3) inhibitors with alternative modes of action have emerged as a promising approach to overcoming antiandrogen resistance. However, how these BF3 inhibitors modulate AR function remains elusive, hindering the development of BF3-targeting agents. Here, we performed an integrated computational study to interrogate the binding mechanism of several known BF3 inhibitors with ARs. Our results show that the inhibitory effect of the BF3 antagonists arises from their allosteric modulation of the activation function (AF2) site, which alters the dynamic coupling between the BF3 and AF2 sites as well as the AF2-coactivator (SRC2-3) interaction. Moreover, the per-residue binding energy analyses reveal the "anchor" role of the linker connecting the phenyl ring and benzimidazole/indole in these BF3 inhibitors. Furthermore, the allosteric driver-interacting residues are found to include both "positive", e.g., Phe673 and Asn833, and "negative" ones, e.g., Phe826, and the differential interactions with these residues provide an explanation why stronger binding does not necessarily result in higher inhibitory activities. Finally, our allosteric communication pathway analyses delineate how the allosteric signals triggered by BF3 binding are propagated to the AF2 pocket through multiple short- and/or long-ranged transmission pathways. Collectively, our combined computational study provides a comprehensive structural mechanism underlying how the selected set of BF3 inhibitors modulate AR function, which will help guide future development of BF3 antagonists.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Antagonistas de Androgênios , Antagonistas de Receptores de Andrógenos/farmacologia , Sítios de Ligação , Humanos , Masculino , Modelos Moleculares
20.
Biochemistry ; 60(11): 886-897, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33689296

RESUMO

Biological motors, ubiquitous in living systems, convert chemical energy into different kinds of mechanical motions critical to cellular functions. Gene product 16 (gp16) in bacteriophage ϕ29 is among the most powerful biomotors known, which adopts a multisubunit ring-shaped structure and hydrolyzes ATP to package double-stranded DNA (dsDNA) into a preformed procapsid. Here we report the crystal structure of the C-terminal domain of gp16 (gp16-CTD). Structure-based alignment and molecular dynamics simulations revealed an essential binding surface of gp16-CTD for prohead RNA, a unique component of the motor complex. Furthermore, our simulations highlighted a dynamic interplay between the N-terminal domain and the CTD of gp16, which may play a role in driving movement of DNA into the procapsid. Lastly, we assembled an atomic structural model of the complete ϕ29 dsDNA packaging motor complex by integrating structural and experimental data from multiple sources. Collectively, our findings provided a refined inchworm-revolution model for dsDNA translocation in bacteriophage ϕ29 and suggested how the individual domains of gp16 work together to power such translocation.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Empacotamento do DNA , Bacteriófagos/fisiologia , DNA Viral/metabolismo , RNA Viral/metabolismo , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA