Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 89(7): 4469-4479, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837700

RESUMO

This study aimed to evaluate the anti-cervical cancer activity of chondroitin sulfate-functionalized selenium nanoparticles (SeCS) and to elucidate their action mechanism. Cytotoxic effect of SeCS on HeLa cells was assessed by MTT assay. Further molecular mechanism of SeCS was analyzed by flow cytometric assay and western blotting. The results showed that treatment with SeCS resulted in a dose- and time-dependent inhibition in the proliferation of HeLa cells. The data obtained from flow cytometry demonstrated that SeCS inhibited HeLa cell growth via the induction of S-phase arrest and cell apoptosis. Further mechanism analysis found that SeCS down-regulated expression levels of cyclin A and CDK2 and up-regulated p21 expression, which contributed to S arrest. Moreover, SeCS increased the level of Bax and decreased the expression of Bcl-2, resulting in the release of cytochrome C from mitochondria and activating caspase-3/8/9 for caspase-dependent apoptosis. Meanwhile, intracellular reactive oxygen species (ROS) levels were elevated after SeCS treatment, suggesting that ROS might be upstream of SeCS-induced S-phase arrest and cell apoptosis. These data show that SeCS has anti-tumor effects and possesses the potential to become a new therapeutic agent or adjuvant therapy for cancer patients. PRACTICAL APPLICATION: In our previous study, we used chondroitin sulfate to stabilize nano-selenium to obtain SeCS to improve the bioactivity and stability of nano-selenium. We found that it possessed an inhibitory effect on HeLa cells. However, the molecular mechanism remains unclear. This study elucidated the mechanism of SeCS damage to HeLa cells. SeCS has the potential to become a new therapeutic agent or adjuvant therapy for cancer patients.


Assuntos
Apoptose , Sulfatos de Condroitina , Nanopartículas , Espécies Reativas de Oxigênio , Selênio , Humanos , Células HeLa , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/química , Apoptose/efeitos dos fármacos , Selênio/farmacologia , Selênio/química , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Antineoplásicos/farmacologia
2.
Int J Biol Macromol ; 269(Pt 1): 132073, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705328

RESUMO

Selenium nanoparticles (SeNPs) are a potential tumor therapeutic drug and have attracted widespread attention due to their high bioavailability and significant anticancer activity. However, the poor water solubility and degradability of selenium nanoparticles severely limit their application. In this study, spherical selenium nanoparticles with a particle size of approximately 50 nm were prepared by using Sargassum fusiforme polysaccharide (SFPS) as a modifier and Tween-80 as a stabilizer. The results of in vitro experiments showed that Sargassum fusiforme polysaccharide-Tween-80-Selenium nanoparticles (SFPS-Tw-SeNPs) had a significant inhibitory effect on A549 cells, with an IC50 value of 6.14 µg/mL, and showed antitumor cell migration and invasion ability against A549 cells in scratch assays and cell migration and invasion assays (transwell assays). Western blot experiments showed that SFPS-Tw-SeNPs could inhibit the expression of tumor migration- and invasion-related proteins. These results suggest that SFPS-Tw-SeNPs may be potential tumor therapeutic agents, especially for the treatment of human lung cancer.


Assuntos
Movimento Celular , Nanopartículas , Polissacarídeos , Sargassum , Selênio , Sargassum/química , Humanos , Selênio/química , Movimento Celular/efeitos dos fármacos , Polissacarídeos/química , Polissacarídeos/farmacologia , Células A549 , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Tamanho da Partícula , Proliferação de Células/efeitos dos fármacos , Algas Comestíveis
3.
Int J Biol Macromol ; 271(Pt 1): 132439, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761907

RESUMO

This study explored the immunomodulatory impact and potential mechanisms on macrophages RAW264.7 using a purified macromolecular sulfate glycosaminoglycan (SBSG) from the swim bladder, whose structure was similar to chondroitin sulfate A. The results showed that SBSG at 0.25-1 mg/mL increased the viability and phagocytosis of RAW264.7 cells. Meanwhile, SBSG promoted the secretion of tumor necrosis factor α (TNF-α), interleukin 10 (IL-10), and nitric oxide (NO), as well as the production of reactive oxygen species (ROS). According to the RT-PCR and Western blot data, SBSG activated TLR4-nuclear factor kappa B (NF-κB) signaling pathways, which decreased the relative mRNA and protein levels of Toll-like receptor 4 (TLR4), IκB kinase ß (IKKß), NF-κB p65, and p-NF-κB p65. The molecular docking and molecular dynamic simulation findings revealed that the main binding force between TLR4 and SBSG was conventional hydrogen bond interaction, resulting in more stable ligand receptor complexes. In summary, SBSG exhibits significant immunomodulatory potential, similar to chondroitin sulfate C. The underlying molecular mechanism involved the binding of SBSG through hydrogen bonding to TLR4 receptors, triggering the NF-κB signaling pathway to downregulate the expression of related genes and proteins. This, in turn, regulated the secretion of various cytokines that were mediated by macrophages to exert the immunity of the body.


Assuntos
Macrófagos , Simulação de Acoplamento Molecular , NF-kappa B , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Glicosaminoglicanos/farmacologia , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Simulação de Dinâmica Molecular , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Fagocitose/efeitos dos fármacos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
4.
Food Chem X ; 22: 101294, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38550887

RESUMO

To accurately, efficiently, and environmentally prepare carrageenan oligosaccharides, we have developed a method that uses H2O2 and TiO2 as catalysts for the photodegradation of κ-carrageenan (KC). The photodegradation of KC was monitored using various amounts of TiO2 and H2O2 and different concentrations of KC via HPLC and it could decrease the average molecular weight of KC into 1.6 kDa within 2 h. Further research under optimal conditions. As a control, the effects of UV, UV/H2O2, UV/TiO2, and H2O2/TiO2 treatments were studied. In contrast, UV/H2O2/TiO2 treatments showed a coordinated effect. The effect of degradation on the structure of KC was investigated by FT-IR, XRD, and there was no obvious remotion of sulfate groups. Furthermore, oral administration of KCO prolonged the healthy lifespan of nematodes induced by ultraviolet stress and significantly regulated oxidative stress. This study suggests that the precise preparation and application of KCO may be beneficial.

5.
Foods ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38540843

RESUMO

Polysaccharides are functional foods or drugs that can be used to alleviate heavy metal poisoning by cadmium, lead, mercury, and arsenic. Industries generate substantial quantities of toxic heavy metal wastes, such as wastewater discharges, paints, electronic waste, batteries, pigments, and plastics, into the environment that pose a risk to human health. Therefore, it is imperative to eliminate accumulated heavy metal ions from the body and the environment. Heavy metal toxicity can lead to decreased energy levels and impair the functioning of vital organs, such as the brain, lungs, kidneys, liver, and blood. Prolonged exposure can result in progressive physical, muscular, and neurological degeneration that resembles conditions such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, and muscular dystrophy. Polysaccharides operate through mechanisms such as chelation, antioxidant defense, immunomodulation, and tissue repair. Polysaccharides involved in heavy metal removal include methionine and cysteine, together with N-acetylcysteine, an acetylated form of cysteine, S-adenosylmethionine, a metabolite of methionine, α-lipoic acid, and the tripeptide glutathione (GSH). These compounds effectively bind with harmful heavy metals to create a stable complex and defend biological targets from metal ions, thus decreasing their harmful effects and causing them to be excreted from the body. This review also highlights the importance of polysaccharides' ability to mitigate oxidative stress, enhance immune responses, and support tissue repair processes. Polysaccharides are ubiquitous in nature and take part in diverse processes, making them potential natural therapies for heavy metal-related diseases. This review discusses the effectiveness of natural polysaccharides and the mechanisms that allow them to bind with heavy metals to alleviate their effects from the body and the environment. Polysaccharides have inherent features that enable them to function as pharmacological agents and regulate the immune response.

6.
Int J Biol Macromol ; 252: 126460, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619679

RESUMO

In this study, a purified macromolecular sulfate glycosaminoglycan whose structural characterization is similar to chondroitin sulfate from the swim bladder of Aristichthys nobilis, named SBSG, was used to explore the intervention effects on arsenic-induced intestinal epithelial cells (IEC-6) damage. Arsenic exposure led to cell membrane rupture, mitochondrial dysfunction, oxidative damage, and down-regulation of tight junction proteins expression. Treatment with SBSG could alleviate arsenic exposure-induced cell damage by decreasing the extracellular lactate dehydrogenase activity and influencing mitochondrial membrane potential, reactive oxygen species level, malondialdehyde content, and anti-oxidative enzyme activity. On the other hand, SBSG could promote nitric oxide production to achieve potential immunoregulation. The Western blot showed that intervention of SBSG mainly could restrain the activation of the JNK signaling pathway and up-regulate the expression of ZO-1 against arsenic-induced cell damage. This study provides a new perspective for understanding the heavy metal detoxification of SBSG on the intestinal and indicates that SBSG could be used as natural antioxidant resistant to heavy metal toxicity.


Assuntos
Arsênio , Metais Pesados , Arsênio/toxicidade , Glicosaminoglicanos/farmacologia , Sulfatos/farmacologia , Bexiga Urinária , Estresse Oxidativo , Metais Pesados/farmacologia , Células Epiteliais
7.
Int J Biol Macromol ; 250: 126247, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562483

RESUMO

Non-alcoholic steatohepatitis (NASH) is one of the most chronic and incurable liver diseases triggered mainly by an inappropriate diet and hereditary factors which burden liver metabolic stress, and may result in liver fibrosis or even cancer. While the available drugs show adverse side effects. The non-toxic bioactive molecules derived from natural resources, particularly marine algal polysaccharides (MAPs), present significant potential for treating NASH. In this review, we summarized the protective effects of MAPs on NASH from multiple perspectives, including reducing oxidative stress, regulating lipid metabolism, enhancing immune function, preventing fibrosis, and providing cell protection. Furthermore, the mechanisms of MAPs in treating NASH were comprehensively described. Additionally, we highlight the influences of the special structures of MAPs on their bioactive differences. Through this comprehensive review, we aim to further elucidate the molecular mechanisms of MAPs in NASH and inspire insights for deeper research on the functional food and clinical applications of MAPs.

8.
Int J Biol Macromol ; 250: 126096, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541476

RESUMO

Bivalves have high diversity, widely distributed in various aquatic environments, including saltwater, brackish water and freshwater. Bivalves are known to rich in polysaccharides and have wide applications in functional foods, pharmaceuticals, and industrial research. Despite many relevant reports are available, the information is poorly organized. Therefore, in this study, we conducted a comprehensive scientific review on the potential bioactivity of polysaccharides derived from bivalves. In general, the polysaccharides derived from bivalves possess various bioactive properties, including anticancer, antioxidant, anticoagulant and immunomodulatory activities. The bioactivity of these biomolecules highly depends on the bivalve species, extraction methods, purification methods, dosages, etc. The information in this study can provide an overview of the bioactivities of bivalve polysaccharides. This is very useful to be used as a guide for identifying the health benefits of polysaccharides derived from different bivalve species.

9.
Foods ; 12(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37048222

RESUMO

As an acidic polysaccharide, the formation of Hyaluronic acid (HA) is typically Sodium Hyaluronate (SH) for knee repair, oral treatment, skincare and as a food additive. Nevertheless, little information is available on the anti-ageing activity of SH as a food additive. Therefore, we treated C. elegans with SH, then inferred the anti-aging activity of SH by examining the lifespan physiological indicators and senescence-associated gene expression. Compared with the control group, SH (800 µg/mL) prolonged the C. elegans' lifespans in regular, 35 °C and H2O2 environment by 0.27-fold, 0.25-fold and 1.17-fold. Simultaneously, glutathione peroxidase (GSH-Px), antioxidant enzyme superoxide dismutase (SOD) and catalase (CAT) were increased by 8.6%, 0.36% and 167%. However, lipofuscin accumulation, reactive oxygen species (ROS) and malondialdehyde (MDA) were decreased by 36%, 47.8-65.7% and 9.5-13.1%. After SH treatment, athletic ability was improved and no impairment of reproductive capacity was seen. In addition, SH inhibited the blocking effect of age-1 and up-regulated gene levels involving daf-16, sod-3, gst-4 and skn-1. In conclusion, SH provides potential applications in anti-ageing and anti-oxidation and regulates physiological function.

10.
Int J Biol Macromol ; 241: 124490, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37076080

RESUMO

Polysaccharides κ-carrageenan (κ-Car) have become a predominant source in developing bioactive materials. We aimed to develop biopolymer composite materials of κ-Car with coriander essential oil (CEO) (κ-Car-CEO) films for fibroblast-associated wound healing. Initially, we loaded the CEO in to κ-Car and CEO through homogenization and ultrasonication to fabricate composite film bioactive materials. After performing morphological and chemical characterizations, we validated the developed material functionalities in both in vitro and in vivo models. The chemical and morphological analysis with physical structure, swelling ratio, encapsulation efficiency, CEO release, and water barrier properties of films examined and showed the structural interaction of κ-Car and CEO-loaded into the polymer network. Furthermore, the bioactive applications of CEO release showed initial burst release followed by controlled release from the κ-Car composite film with fibroblast (L929) cell adhesive capabilities and mechanosensing. Our results proved that the CEO-loaded into the κ-Car film impacts cell adhesion, F-actin organization, and collagen synthesis, followed by in vitro mechanosensing activation, further promoting wound healing in vivo. Our innovative perspectives of active polysaccharide (κ-Car)-based CEO functional film materials could potentially accomplish regenerative medicine.


Assuntos
Materiais Biocompatíveis , Óleos Voláteis , Carragenina/farmacologia , Carragenina/química , Materiais Biocompatíveis/farmacologia , Cicatrização , Óleos Voláteis/farmacologia , Polímeros
11.
Molecules ; 28(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36985583

RESUMO

Fucoidan has many biological functions, including anti-tumor activity. Additionally, it has been suggested that low-molecular-weight fucoidans have greater bioactivities. This study aimed to examine the degradation, purification, physicochemical characterization and in vitro antitumor activity of fucoidan from Sargassum hemiphyllum (Turner) C. Agardh. Fucoidan was isolated using DEAE-cellulose-52 (F1, F2), Vc-H2O2 degration, and Sepharose CL-6B gel (DF1, DF2) from crude Sargassum fucoidans. Physicochemical characteristics of four isolated fucoidans were examined using chemical and monosaccharide composition, average molecular weight (Mw), and FTIR. Furthermore, the anti-proliferative effects of purified fucoidans on human hepatocellular carcinoma cells (HepG2), human Burkitt Lymphoma cells (MCF-7), human uterine carcinoma cells (Hela) and human lung cancer cells (A549) were analyzed by MTT method. The apoptosis of HepG2 cells was detected by flow cytometry. Our data suggest that the contents of polysaccharide, L-fucose and sulfate of DF2 were the highest, which were 73.93%, 23.02% and 29.88%, respectively. DF1 has the smallest molecular weight (14,893 Da) followed by DF2 (21,292 Da). The four fractions are mainly composed of fucose, mannose and rhamnose, and the infrared spectra are similar, all of which contain polysaccharide and sulfate characteristic absorption peaks. The results of MTT assay showed that the four fractions had inhibitory effects on HepG2 and A549 in the range of 0.5-8 mg/mL, and the four fractions had strong cytotoxic effects on HepG2 cells. DF2 had the best inhibitory effect on HepG2 (IC50 = 2.2 mg/mL). In general, the antitumor activity of Sargassum fucoidans is related to the content of L-fucose, sulfate and molecular weight, and Sargassum fucoidan has the best inhibitory effect on HepG2 hepatocellular carcinoma cells. Furthermore, when compared to MCF-7, Hela, and A549 cells, Sargassum fucoidans had the best capacity to reduce the viability of human hepatocellular carcinoma cells (HepG2) and to induce cell apoptosis, proving itself to have a good potential in anti-liver cancer therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sargassum , Humanos , Sargassum/química , Fucose , Peróxido de Hidrogênio , Carcinoma Hepatocelular/tratamento farmacológico , Polissacarídeos/química , Células HeLa , Sulfatos
12.
Front Immunol ; 13: 919145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211371

RESUMO

Introduction: Skin cutaneous melanoma (SKCM) is the world's fourth deadliest cancer, and advanced SKCM leads to a poor prognosis. Novel biomarkers for SKCM diagnosis and prognosis are urgently needed. Long non-coding RNAs (lncRNAs) provide various biological functions and have been proved to play a significant role in tumor progression. Single-cell RNA sequencing (scRNA-seq) enables genome analysis at the single-cell level. This study explored prognostic lncRNAs in SKCM based on scRNA-seq and bulk RNA sequencing data. Materials and methods: The TCGA cohort and melanoma samples in the GEO database (GSE72056, GSE19234, GSE15605, GSE7553, and GSE81383) were included in this study. Marker genes were filtered, and ensemble lncRNAs were annotated. The clinical significance of selected lncRNAs was verified through TCGA and GEO dataset analysis. SiRNA transfection, wound-healing and transwell assays were performed to evaluate the effect of PRRT3-AS1 on cellular function. Immune infiltration of the selected lncRNAs was also exhibited. Results: A 5-marker-lncRNAs model of significant prognostic value was constructed based on GSE72056 and the TCGA cohort. PRRT3-AS1 combined with DANCR was then found to provide significant prognostic value in SKCM. PRRT3-AS1 was filtered for its higher expression in more advanced melanoma and significant prognosis value. Cellular function experiments in vitro revealed that PRRT3-AS1 may be required for cancer cell migration in SKCM. PRRT3-AS1 was found to be related to epithelial-mesenchymal transition (EMT) signaling pathways. DNA methylation of PRRT3-AS1 was negatively related to PRRT3-AS1 expression and showed significant prognosis value. In addition, PRRT3-AS1 may suppress immune infiltration and be involved in immunotherapy resistance. Conclusion: PRRT3-AS1 may be a diagnostic and prognostic biomarker of SKCM.


Assuntos
Melanoma , RNA Longo não Codificante , Neoplasias Cutâneas , Biomarcadores , Análise de Dados , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Melanoma/terapia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno , Melanoma Maligno Cutâneo
13.
Int J Biol Macromol ; 221: 472-485, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36089081

RESUMO

Cancer is a leading cause of death in both developing and developed countries. With the increase in the average global life expectancy, it has become a major health problem and burden for most public healthcare systems worldwide. Due to the fewer side effects of natural compounds than of chemotherapeutic drugs, increasing scientific attention is being focused on the development of anti-cancer drugs derived from natural sources. Marine algae are an interesting source of functional compounds with diverse health-promoting activities. Among these compounds, polysaccharides have attracted considerable interest for many years because of their excellent anti-cancer abilities. They improve the efficacy of conventional chemotherapeutic drugs with relatively low toxicity to normal human cells. However, there are few reviews summarising the unique anti-cancer effects and underlying mechanisms of marine algae polysaccharides (MAPs). Thus, the current review focuses on updating the advances in the discovery and evaluation of MAPs with anti-cancer properties and the elucidation of their mechanisms of action, including the signalling pathways involved. This review aims to provide a deeper understanding of the anti-cancer functions of the natural compounds derived from medicinal marine algae and thereby offer a new perspective on cancer prevention and therapy with high effectiveness and safety.


Assuntos
Antineoplásicos , Polissacarídeos , Humanos , Polissacarídeos/farmacologia , Antineoplásicos/farmacologia
14.
Crit Rev Food Sci Nutr ; 62(28): 7703-7717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33939558

RESUMO

Marine algae contain abundant polysaccharides that support a range of health-promoting activities; however, the high molecular weight, high viscosity, and low solubility of marine algae polysaccharides (MAPs) limit their application in food, agriculture and medicine. Thus, as the degradation products of MAPs, marine algae oligosaccharides (MAOs) have drawn increasing attention. Most MAOs are non-digestible by digestive enzyme in the human gastrointestinal tract, but are fermented by bacteria in the gut and converted into short-chain fatty acids (SCFAs). MAOs can selectively enhance the activities of some populations of beneficial bacteria and stimulate a series of prebiotic effects, such as anti-oxidant, anti-diabetic, anti-tumour. However, the exact structures of MAOs and their prebiotic activities are, to a large extent, unexplored. This review summarizes recent advances in the sources, categories, and structure analysis methods of MAOs, emphasizing their effects on gut microbiota and its metabolite SCFAs as well as the resulting range of probiotic activities.


Assuntos
Microbioma Gastrointestinal , Prebióticos , Antioxidantes , Bactérias , Humanos , Oligossacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia
15.
Carbohydr Polym ; 275: 118696, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742423

RESUMO

Most marine macroalgae such as red seaweeds are potential alternative sources of useful bioactive compounds. Beside serving as food source, recent studies have shown that red seaweeds are rich sources of bioactive polysaccharides. Red seaweed polysaccharides (RSPs) have various physiological and biological activities, which allow them to be used as immunomodulators, anti-obesity agents, and prebiotic ingredients. Lack of summary information and human clinical trials on the various polysaccharides from red seaweeds, however limits industrial-scale utilization of RSPs in functional foods. This review summarizes recent information on the approaches used for RSPs extraction and purification, mechanistic investigations of their biological activities, and related molecular principles behind their purported ability to prevent diseases. The information here also provides a theoretical foundation for further research into the structure and mechanism of action of RSPs and their potential applications in functional foods.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Suplementos Nutricionais/análise , Polissacarídeos/farmacologia , Prebióticos/análise , Alga Marinha/química , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Humanos , Polissacarídeos/química , Polissacarídeos/isolamento & purificação
16.
Int J Biol Macromol ; 194: 563-570, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34813785

RESUMO

A single-step and rapid chromatographic method-based purification of Gracilaria corticata (J. Agardh) R-phycoerythrin (R-PE) was attained using polyacrylamide gel electrophoresis (PAGE) technique without affecting structural integrity. The purified R-PE had a characteristic UV-Vis spectrum with three absorbance maxima at 496, 535, and 565 nm, and fluorescence at 575 nm. R-PE was obtained with a purity index of 4.2 and a recovery yield of 44.3%. SDS-PAGE analysis exhibited three sub-units i.e., 18, 21, and 31 kDa, which corresponds to α, ß, and γ, respectively. This report's purification process was considered less time-consuming and could be efficiently applied to purify phycobiliproteins. The purified R-PE showed optimal stability up to 6 h at pH 7.0 when exposed to light (3000 lx), while the temperature at which the maximum stability was retained was at 20 °C. The cellular imaging property of R-PE was effectively implemented to evaluate its credentials without affecting the cell proliferation of Vero and Hep-2 cell lines with the higher IC50 concentrations in vitro. Under fluorescence microscopy and flow cytometry analysis, purified R-PE displayed the characteristic affinity towards cell imaging functions in preliminary in vitro studies.


Assuntos
Corantes Fluorescentes , Gracilaria/metabolismo , Imagem Óptica/métodos , Ficoeritrina , Animais , Chlorocebus aethiops , Corantes Fluorescentes/química , Corantes Fluorescentes/isolamento & purificação , Células Hep G2 , Humanos , Ficoeritrina/química , Ficoeritrina/isolamento & purificação , Células Vero
17.
Oxid Med Cell Longev ; 2021: 4586319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956437

RESUMO

Breast cancer (BRCA) is a malignant tumor with a high incidence and poor prognosis in females. However, its pathogenesis remains unclear. In this study, based on bioinformatic analysis, we found that LINC00467 was highly expressed in BRCA and was associated with tumor metastasis and poor prognosis. The genomic and epigenetic analysis showed that LINC00467 may also be regulated by copy number amplification (CNA), chromatin openness, and DNA methylation. In vitro experiments showed that it could promote the proliferation, migration, and invasion of BRCA cells. Competitive endogenous RNA (ceRNA) regulatory network analysis and weighted gene coexpression network analysis (WGCNA) suggested that LINC00467 may play a role in signaling pathways of peroxisomal lipid metabolism, immunity, and others through microRNAs (miRNAs) targeting transforming growth factor beta 2 (TGFB2). In addition, copy number amplification and high expression of LINC00467 were associated with the low infiltration of CD8+ and CD4+ T cells. In conclusion, we found that LINC00467, driven by copy number amplification and DNA demethylation, may be a potential biomarker for the diagnosis and prognosis of BRCA and a tumor promoter acting as a potential therapeutic target for BRCA as well.


Assuntos
Neoplasias da Mama/genética , Variações do Número de Cópias de DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Metabolismo dos Lipídeos/genética , RNA Longo não Codificante/metabolismo , Neoplasias da Mama/mortalidade , Desmetilação do DNA , Feminino , Humanos , Análise de Sobrevida , Transfecção
18.
J Ethnopharmacol ; 274: 114024, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33727110

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lignosus rhinocerotis (Cooke) Ryvarden cultivar TM02, also known as tiger's milk mushroom, is regarded as important folk medicine in Malaysia, while is used for the treatment of liver cancer, chronic hepatitis, gastric ulcer in traditional Chinese medicine. However, there is no compilation of scientific evidence that its protection for gastric, and no attempts have been made to understand how polysaccharides in Lignosus rhinocerotis might promote intestinal mucosal wound healing. AIM OF THE STUDY: This study aimed to investigate the effect and mechanism of ß-glucan prepared from L. rhinocerotis using an enzymatic method on epithelial restitution during intestinal mucosal damage. MATERIALS AND METHODS: Based on FT-IR, MALDI-TOF-MS, HPSEC-MALLS-RID, and AFM, the structure of polysaccharides from L. rhinocerotis was analysed. In addition, polysaccharides were used to test for wound healing activity in IEC-6 cells by measuring cell migration, proliferation, and expression of cell division control protein 42, Rac-1, RhoA, and Par-3. RESULTS: ß-glucan was extracted using enzyme-assisted extraction, and a yield of approximately 8.5 ± 0.8% was obtained from the dried biomass. The ß-glucan extracted by enzyme-assisted extraction (EAE) of polysaccharides was composed entirely of D-glucose with a total carbohydrate content of 95.5 ± 3.2%. The results of HPLC, FTIR, and MALDI-TOF-MS analyses revealed EAEP to be confirmed as ß-glucan. The molecular weight of prepared ß-glucan was found to be 5.315 × 104 g/mol by HPSEC-MALLS-RID. Furthermore, mucosal wound healing studies showed that the treatment of IEC-6 with a ß-glucan concentration of 200 µg/mL promoted cell migration and proliferation, and it enhanced the protein expression of cell division control protein 42, Rac-1, RhoA, and Par-3. CONCLUSIONS: The present study reveals that the prepared ß-glucan accelerates intestinal epithelial cell proliferation and migration via activation of Rho-dependent pathway. Hence, ß-glucan can be employed as a prospective therapeutic agent for the treatment of diseases associated with gastrointestinal mucosal damage, such as peptic ulcers and inflammatory bowel disease.


Assuntos
Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Polyporaceae/química , Cicatrização/efeitos dos fármacos , beta-Glucanas/farmacologia , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Malásia , Medicina Tradicional do Leste Asiático , Ratos , beta-Glucanas/análise , beta-Glucanas/química , Proteínas rho de Ligação ao GTP/metabolismo
19.
Polymers (Basel) ; 13(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573123

RESUMO

Marine rhodophyte polysaccharides have a wide range of described biological properties with nontoxic characteristics, and show great potential in prebiotics and the functional foods industries. However, there is a virtual lack of Gracilaria blodgettii polysaccharides (GBP) profiling and their bioactivities. This study was designed while keeping in view the lack of physical and chemical characterization of GBP. This polysaccharide was also not previously tested for any bioactivities. A linear random coil conformation was observed for GBP, which was found to be a polysaccharide. A significant sulfate (w/w, 9.16%) and 3,6-anhydrogalactose (AHG, w/w, 17.97%) content was found in GBP. The significant difference in its setting (27.33 °C) and melting (64.33 °C) points makes it resistant to increasing heat. This, in turn, points to its utility in industrial scale processing and in enhancing the shelf-life of products under high temperatures. A radical scavenging activity of 19.80%, 25.42% and 8.80% was noted for GBP (3 mg/mL) in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (ABTS) and hydroxyl radical (HO) scavenging assays, respectively. Therefore, the findings suggest that Gracilaria blodgettii polysaccharides display a good antioxidant potential and may have potential applications in the functional food industry.

20.
BMC Chem ; 15(1): 1, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430936

RESUMO

Brown seaweed polysaccharides (BSPs) are one of the primary active components from brown seaweed that has a range of pharmaceutical and biomedical applications. However, the quality control of BSPs is a challenge due to their complicated structure and macromolecule. In this study, saccharide mapping based on high-performance liquid chromatography (HPLC), multi-angle laser light scattering, viscometer, and refractive index detector (HPSEC-MALLS-Vis-RID), and Fourier transform infrared (FT-IR) were used to discriminate the polysaccharides from nine different species of brown algae (BA1-9). The results showed that BSPs were composed of ß-D-glucans and ß-1,3-1,4-glucan linkages. The molecular weight, radius of gyration, and intrinsic viscosity of BSPs were ranging from 1.718 × 105 Da to 6.630 × 105 Da, 30.2 nm to 51.5 nm, and 360.99 mL/g to 865.52 mL/g, respectively. Moreover, α values of BSPs were in the range of 0.635 to 0.971, which indicated a rigid rod chain conformation. The antioxidant activities of BSPs exhibited substantial radical scavenging activities against DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2, 2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) radicals, which indicated that the use of BSPs might be a potential approach for antioxidant supplements. Thus, this study gives insights about the structure-function relationship of BSPs, which will be beneficial to improve the quality of polysaccharides derived from marine algae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA