Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 180: 244-261, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38615812

RESUMO

Low back pain is a leading cause of disability worldwide, often attributed to intervertebral disc (IVD) degeneration with loss of the functional nucleus pulposus (NP). Regenerative strategies utilizing biomaterials and stem cells are promising for NP repair. Human NP tissue is highly viscoelastic, relaxing stress rapidly under deformation. However, the impact of tissue-specific viscoelasticity on the activities of adipose-derived stem cells (ASC) remains largely unexplored. Here, we investigated the role of matrix viscoelasticity in regulating ASC differentiation for IVD regeneration. Viscoelastic alginate hydrogels with stress relaxation time scales ranging from 100 s to 1000s were developed and used to culture human ASCs for 21 days. Our results demonstrated that the fast-relaxing hydrogel significantly enhanced ASCs long-term cell survival and NP-like extracellular matrix secretion of aggrecan and type-II collagen. Moreover, gene expression analysis revealed a substantial upregulation of the mechanosensitive ion channel marker TRPV4 and NP-specific markers such as SOX9, HIF-1α, KRT18, CDH2 and CD24 in ASCs cultured within the fast-relaxing hydrogel, compared to slower-relaxing hydrogels. These findings highlight the critical role of matrix viscoelasticity in regulating ASC behavior and suggest that viscoelasticity is a key parameter for novel biomaterials design to improve the efficacy of stem cell therapy for IVD regeneration. STATEMENT OF SIGNIFICANCE: Systematically characterized the influence of tissue-mimetic viscoelasticity on ASC. NP-mimetic hydrogels with tunable viscoelasticity and tissue-matched stiffness. Long-term survival and metabolic activity of ASCs are substantially improved in the fast-relaxing hydrogel. The fast-relaxing hydrogel allows higher rate of cell protrusions formation and matrix remodeling. ASC differentiation towards an NP-like cell phenotype is promoted in the fast-relaxing hydrogel, with more CD24 positive expression indicating NP committed cell fate. The expression of TRPV4, a molecular sensor of matrix viscoelasticity, is significantly enhanced in the fast-relaxing hydrogel, indicating ASC sensing matrix viscoelasticity during cell development. The NP-specific ECM secretion of ASC is considerably influenced by matrix viscoelasticity, where the deposition of aggrecan and type-II collagen are significantly enhanced in the fast-relaxing hydrogel.


Assuntos
Tecido Adiposo , Hidrogéis , Células-Tronco Mesenquimais , Núcleo Pulposo , Regeneração , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Núcleo Pulposo/citologia , Núcleo Pulposo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Regeneração/efeitos dos fármacos , Tecido Adiposo/citologia , Viscosidade , Elasticidade , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Alginatos/química , Alginatos/farmacologia
2.
Biomolecules ; 13(8)2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37627322

RESUMO

BACKGROUND: Low back pain is a global health problem directly related to intervertebral disc (IVD) degeneration. Senolytic drugs (RG-7112 and o-Vanillin) target and remove senescent cells from IVDs in vitro, improving tissue homeostasis. One drawback of using a single senolytic agent is the failure to target multiple senescent antiapoptotic pathways. This study aimed to determine if combining the two senolytic drugs, o-Vanillin and RG-7112, could more efficiently remove senescent cells and reduce the release of inflammatory factors and pain mediators in cells from degenerating human IVDs than either drug alone. METHODS: Preliminary data evaluating multiple concentrations of o-Vanillin and RG-7112 led to the selection of four treatment groups. Monolayer and pellet cultures of cells from painful degenerate IVDs were exposed to TLR-2/6 agonist. They were then treated with the senolytics o-Vanillin and RG7112 alone or combined. p16ink4a, Ki-67, caspase-3, inflammatory mediators, and neuronal sprouting were assessed. RESULTS: Compared to the single treatments, the combination of o-Vanillin and RG-7112 significantly reduced the amount of senescent IVD cells, proinflammatory cytokines, and neurotrophic factors. Moreover, both single and combination treatments significantly reduced neuronal sprouting in rat adrenal pheochromocytoma (PC-12 cells). CONCLUSIONS: Combining o-Vanillin and RG-7112 greatly enhanced the effect of either senolytic alone. Together, these results support the potential of senolytics as a promising treatment for IVD-related low back pain.


Assuntos
Degeneração do Disco Intervertebral , Dor Lombar , Humanos , Animais , Ratos , Dor Lombar/tratamento farmacológico , Senoterapia , Benzaldeídos , Adjuvantes Imunológicos , Degeneração do Disco Intervertebral/tratamento farmacológico
3.
Cells ; 11(22)2022 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-36429018

RESUMO

Human mesenchymal stem cell (hMSC) and extracellular vesicle (EV) therapy is a promising treatment for discogenic low back pain (LBP). Although promising, major obstacles remain to be overcome. Cellular senescence reduces self-renewal and multipotent potentials, and the senescence-associated secretory phenotype creates an inflammatory environment negatively affecting tissue homeostasis. Reducing senescence could therefore improve regenerative approaches. Ortho-Vanillin (o-Vanillin) has senolytic activity and anti-inflammatory properties and could be a valuable supplement to MSC and EV therapy. Here, we used direct co-culture experiments to evaluate proteoglycan synthesis, inflammatory mediators, and senescent cells in the presence or absence of o-Vanillin. EV release and transfer between hMSCs and intervertebral disc cells (DCs) was examined, and the effect on hMSC differentiation and DC phenotype was evaluated in the presence and absence of o-Vanillin. This study demonstrates that o-Vanillin affects cell communication, enhances hMSC differentiation and improves DC phenotype. Co-cultures of DCs and hMSCs resulted in increased proteoglycan synthesis, a decreased number of senescent cells and decreased release of the cytokines IL6 and 8. Effects that were further enhanced by o-Vanillin. o-Vanillin profoundly increased EV release and/or uptake by hMSCs and DCs. DC markers were significantly upregulated in both cell types in response to conditioned media of o-Vanillin treated donor cells. Collectively, this study demonstrates that o-Vanillin affects hMSC and DC crosstalk and suggests that combining hMSCs and senolytic compounds may improve the outcome of cell supplementation and EV therapy for LBP.


Assuntos
Vesículas Extracelulares , Disco Intervertebral , Células-Tronco Mesenquimais , Humanos , Senoterapia , Disco Intervertebral/metabolismo , Proteoglicanas/metabolismo , Fenótipo
4.
Cells ; 10(7)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208876

RESUMO

During the development of the retina and the nervous system, high levels of energy are required by the axons of retinal ganglion cells (RGCs) to grow towards their brain targets. This energy demand leads to an increase of glycolysis and L-lactate concentrations in the retina. L-lactate is known to be the endogenous ligand of the GPR81 receptor. However, the role of L-lactate and its receptor in the development of the nervous system has not been studied in depth. In the present study, we used immunohistochemistry to show that GPR81 is localized in different retinal layers during development, but is predominantly expressed in the RGC of the adult rodent. Treatment of retinal explants with L-lactate or the exogenous GPR81 agonist 3,5-DHBA altered RGC growth cone (GC) morphology (increasing in size and number of filopodia) and promoted RGC axon growth. These GPR81-mediated modifications of GC morphology and axon growth were mediated by protein kinases A and C, but were absent in explants from gpr81-/- transgenic mice. Living gpr81-/- mice showed a decrease in ipsilateral projections of RGCs to the dorsal lateral geniculate nucleus (dLGN). In conclusion, present results suggest that L-lactate and its receptor GPR81 play an important role in the development of the visual nervous system.


Assuntos
Lactatos/metabolismo , Sistema Nervoso/embriologia , Receptores Acoplados a Proteínas G/metabolismo , Visão Ocular/fisiologia , Animais , Axônios/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Cones de Crescimento/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação , Proteína Quinase C/metabolismo , Retina/metabolismo , Tálamo/metabolismo
5.
Arthritis Res Ther ; 23(1): 117, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863359

RESUMO

BACKGROUND: There is an increased level of senescent cells and toll-like teceptor-1, -2, -4, and -6 (TLR) expression in degenerating intervertebral discs (IVDs) from back pain patients. However, it is currently not known if the increase in expression of TLRs is related to the senescent cells or if it is a more general increase on all cells. It is also not known if TLR activation in IVD cells will induce cell senescence. METHODS: Cells from non-degenerate human IVD were obtained from spine donors and cells from degenerate IVDs came from patients undergoing surgery for low back pain. Gene expression of TLR-1,2,4,6, senescence and senescence-associated secretory phenotype (SASP) markers was evaluated by RT-qPCR in isolated cells. Matrix synthesis was verified with safranin-O staining and Dimethyl-Methylene Blue Assay (DMMB) confirmed proteoglycan content. Protein expression of p16INK4a, SASP factors, and TLR-2 was evaluated by immunocytochemistry (ICC) and/or by enzyme-linked immunosorbent assay (ELISA). RESULTS: An increase in senescent cells was found following 48-h induction with a TLR-2/6 agonist in cells from both non-degenerate and degenerating human IVDs. Higher levels of SASP factors, TLR-2 gene expression, and protein expression were found following 48-h induction with TLR-2/6 agonist. Treatment with o-vanillin reduced the number of senescent cells, and increased matrix synthesis in IVD cells from back pain patients. Treatment with o-vanillin after induction with TLR-2/6 agonist reduced gene and protein expression of SASP factors and TLR-2. Co-localized staining of p16INK4a and TLR-2 demonstrated that senescent cells have a high TLR-2 expression. CONCLUSIONS: Taken together our data demonstrate that activation of TLR-2/6 induce senescence and increase TLR-2 and SASP expression in cells from non-degenerate IVDs of organ donors without degeneration and back pain and in cells from degenerating human IVD of patients with disc degeneration and back pain. The senescent cells showed high TLR-2 expression suggesting a link between TLR activation and cell senescence in human IVD cells. The reduction in senescence, SASP, and TLR-2 expression suggest o-vanillin as a potential disease-modifying drug for patients with disc degeneration and back pain.


Assuntos
Benzaldeídos/farmacologia , Degeneração do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Receptor 2 Toll-Like , Senescência Celular , Humanos , Degeneração do Disco Intervertebral/tratamento farmacológico , Receptor 2 Toll-Like/genética
6.
J Clin Med ; 8(4)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934902

RESUMO

Curcumin and o-Vanillin cleared senescent intervertebral disc (IVD) cells and reduced the senescence-associated secretory phenotype (SASP) associated with inflammation and back pain. Cells from degenerate and non-mildly-degenerate human IVD were obtained from organ donors and from patients undergoing surgery for low back pain. Gene expression of senescence and SASP markers was evaluated by RT-qPCR in isolated cells, and protein expression of senescence, proliferation, and apoptotic markers was evaluated by immunocytochemistry (ICC). The expression levels of SASP factors were evaluated by enzyme-linked immunosorbent assay (ELISA). Matrix synthesis was verified with safranin-O staining and the Dimethyl-Methylene Blue Assay for proteoglycan content. Western blotting and ICC were used to determine the molecular pathways targeted by the drugs. We found a 40% higher level of senescent cells in degenerate compared to non-mildly-degenerate discs from unrelated individuals and a 10% higher level in degenerate compared to non-mildly-degenerate discs from the same individual. Higher levels of senescence were associated with increased SASP. Both drugs cleared senescent cells, and treatment increased the number of proliferating as well as apoptotic cells in cultures from degenerate IVDs. The expression of SASP factors was decreased, and matrix synthesis increased following treatment. These effects were mediated through the Nrf2 and NFkB pathways.

7.
PLoS One ; 8(8): e70849, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951024

RESUMO

Navigation of retinal projections towards their targets is regulated by guidance molecules and growth cone transduction mechanisms. Here, we present in vitro and in vivo evidences that the cannabinoid receptor 2 (CB2R) is expressed along the retino-thalamic pathway and exerts a modulatory action on axon guidance. These effects are specific to CB2R since no changes were observed in mice where the gene coding for this receptor was altered (cnr2 (-/-)). The CB2R induced morphological changes observed at the growth cone are PKA dependent and require the presence of the netrin-1 receptor, Deleted in Colorectal Cancer. Interfering with endogenous CB2R signalling using pharmacological agents increased retinal axon length and induced aberrant projections. Additionally, cnr2 (-/-) mice showed abnormal eye-specific segregation of retinal projections in the dorsal lateral geniculate nucleus (dLGN) indicating CB2R's implication in retinothalamic development. Overall, this study demonstrates that the contribution of endocannabinoids to brain development is not solely mediated by CB1R, but also involves CB2R.


Assuntos
Axônios/metabolismo , Endocanabinoides/metabolismo , Corpos Geniculados/metabolismo , Receptor CB2 de Canabinoide/genética , Células Ganglionares da Retina/metabolismo , Animais , Axônios/ultraestrutura , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Corpos Geniculados/citologia , Corpos Geniculados/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Receptores de Netrina , Neurogênese/fisiologia , Cultura Primária de Células , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/deficiência , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Células Ganglionares da Retina/citologia , Vias Visuais/fisiologia
8.
J Neurosci ; 31(4): 1489-99, 2011 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-21273433

RESUMO

Endocannabinoids (eCBs) are retrograde neurotransmitters that modulate the function of many types of synapses. The presence of eCBs, their CB1 receptor (CB1R), and metabolizing enzymes at embryonic and early postnatal periods have been linked to developmental processes such as neuronal proliferation, differentiation, and migration, axon guidance, and synaptogenesis. Here, we demonstrate the presence of a functional eCB system in the developing visual system and the role of CB1R during axon growth and retinothalamic development. Pharmacological treatment of retinal explants and primary cortical neuron cultures with ACEA, a selective CB1R agonist, induced a collapse of the growth cone (GC). Furthermore the application of AM251, a CB1R inverse agonist, to the neuronal cultures increased the surface area of GC. In vivo, intraocular injection of ACEA diminished retinal projection growth, while AM251 promoted growth and caused aberrant projections. In addition, compared with their wild-type littermates, CB1R-deficient adult mice revealed a lower level of eye-specific segregation of retinal projections in the dorsal lateral geniculate nucleus. Finally, we found that pharmacological modulation of CB1R affected the trafficking of Deleted in colorectal cancer (DCC) receptor to the plasma membrane in a PKA-dependent manner. Moreover, pharmacological inhibition or genetic inactivation of DCC abolished the CB1R-induced reorganization of the GC. Overall, these findings establish a mechanism by which the CB1R influences GC behavior and nervous system development in concerted action with DCC.


Assuntos
Axônios/fisiologia , Neurônios/metabolismo , Receptor CB1 de Canabinoide/fisiologia , Receptores de Superfície Celular/fisiologia , Retina/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Animais , Moduladores de Receptores de Canabinoides/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , AMP Cíclico/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Receptor DCC , Agonismo Inverso de Drogas , Cones de Crescimento/fisiologia , Técnicas In Vitro , Camundongos , Camundongos Knockout , Neurotransmissores/metabolismo , Transporte Proteico , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/genética , Retina/embriologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/ultraestrutura , Tálamo/embriologia , Tálamo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA