Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 20: 100132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34389466

RESUMO

Structural analysis of host-pathogen protein complexes remains challenging, largely due to their structural heterogeneity. Here, we describe a pipeline for the structural characterization of these complexes using integrative structure modeling based on chemical cross-links and residue-protein contacts inferred from mutagenesis studies. We used this approach on the HIV-1 Vif protein bound to restriction factor APOBEC3G (A3G), the Cullin-5 E3 ring ligase (CRL5), and the cellular transcription factor Core Binding Factor Beta (CBFß) to determine the structure of the (A3G-Vif-CRL5-CBFß) complex. Using the MS-cleavable DSSO cross-linker to obtain a set of 132 cross-links within this reconstituted complex along with the atomic structures of the subunits and mutagenesis data, we computed an integrative structure model of the heptameric A3G-Vif-CRL5-CBFß complex. The structure, which was validated using a series of tests, reveals that A3G is bound to Vif mostly through its N-terminal domain. Moreover, the model ensemble quantifies the dynamic heterogeneity of the A3G C-terminal domain and Cul5 positions. Finally, the model was used to rationalize previous structural, mutagenesis and functional data not used for modeling, including information related to the A3G-bound and unbound structures as well as mapping functional mutations to the A3G-Vif interface. The experimental and computational approach described here is generally applicable to other challenging host-pathogen protein complexes.


Assuntos
Desaminase APOBEC-3G/química , Subunidade beta de Fator de Ligação ao Core/química , Proteínas Culina/química , Ubiquitina-Proteína Ligases/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Espectrometria de Massas , Modelos Moleculares
2.
EMBO Rep ; 18(10): 1740-1751, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28835547

RESUMO

Interferon-induced transmembrane protein 3 (IFITM3) is a cellular factor that blocks virus fusion with cell membranes. IFITM3 has been suggested to alter membrane curvature and fluidity, though its exact mechanism of action is unclear. Using a bioinformatic approach, we predict IFITM3 secondary structures and identify a highly conserved, short amphipathic helix within a hydrophobic region of IFITM3 previously thought to be a transmembrane domain. Consistent with the known ability of amphipathic helices to alter membrane properties, we show that this helix and its amphipathicity are required for the IFITM3-dependent inhibition of influenza virus, Zika virus, vesicular stomatitis virus, Ebola virus, and human immunodeficiency virus infections. The homologous amphipathic helix within IFITM1 is also required for the inhibition of infection, indicating that IFITM proteins possess a conserved mechanism of antiviral action. We further demonstrate that the amphipathic helix of IFITM3 is required to block influenza virus hemagglutinin-mediated membrane fusion. Overall, our results provide evidence that IFITM proteins utilize an amphipathic helix for inhibiting virus fusion.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Internalização do Vírus , Fenômenos Fisiológicos Virais , Biologia Computacional , Ebolavirus/fisiologia , Células HEK293 , HIV/fisiologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Vírus da Influenza A/fisiologia , Estrutura Secundária de Proteína , Zika virus/fisiologia
3.
Viruses ; 7(6): 3035-52, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26075508

RESUMO

Interferon induced transmembrane proteins (IFITMs) found in vertebrates restrict infections by specific viruses. IFITM3 is known to be essential for restriction of influenza virus infections in both mice and humans. Vertebrate IFITMs are hypothesized to have derived from a horizontal gene transfer from bacteria to a primitive unicellular eukaryote. Since bacterial IFITMs share minimal amino acid identity with human IFITM3, we hypothesized that examination of bacterial IFITMs in human cells would provide insight into the essential characteristics necessary for antiviral activity of IFITMs. We examined IFITMs from Mycobacterium avium and Mycobacterium abscessus for potential antiviral activity. Both of these IFITMs conferred a moderate level of resistance to influenza virus in human cells, identifying them as functional homologues of IFITM3. Analysis of sequence elements shared by bacterial IFITMs and IFITM3 identified two hydrophobic domains, putative S-palmitoylation sites, and conserved phenylalanine residues associated with IFITM3 interactions, which are all necessary for IFITM3 antiviral activity. We observed that, like IFITM3, bacterial IFITMs were S-palmitoylated, albeit to a lesser degree. We also demonstrated the ability of a bacterial IFITM to co-immunoprecipitate with IFITM3 suggesting formation of a complex, and also visualized strong co-localization of bacterial IFITMs with IFITM3. However, the mycobacterial IFITMs lack the endocytic-targeting motif conserved in vertebrate IFITM3. As such, these bacterial proteins, when expressed alone, had diminished colocalization with cathepsin B-positive endolysosomal compartments that are the primary site of IFITM3-dependent influenza virus restriction. Though the precise evolutionary origin of vertebrate IFITMs is not known, our results support a model whereby transfer of a bacterial IFITM gene to eukaryotic cells may have provided a selective advantage against viral infection that was refined through the course of vertebrate evolution to include more robust signals for S-palmitoylation and localization to sites of endocytic virus trafficking.


Assuntos
Antivirais/metabolismo , Proteínas de Bactérias/metabolismo , Expressão Gênica , Indutores de Interferon/metabolismo , Mycobacterium/imunologia , Orthomyxoviridae/imunologia , Proteínas de Bactérias/genética , Linhagem Celular , Sequência Conservada , Endossomos/química , Células Epiteliais/química , Células Epiteliais/imunologia , Células Epiteliais/virologia , Humanos , Lipoilação , Mycobacterium/genética , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
4.
Am J Physiol Lung Cell Mol Physiol ; 308(11): L1136-44, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25840995

RESUMO

As the eighth leading cause of annual mortality in the USA, influenza A viruses are a major public health concern. In 20% of patients, severe influenza progresses to acute lung injury (ALI). However, pathophysiological mechanisms underlying ALI development are poorly defined. We reported that, unlike wild-type (WT) C57BL/6 controls, influenza A virus-infected mice that are heterozygous for the F508del mutation in the cystic fibrosis transmembrane conductance regulator (HETs) did not develop ALI. This effect was associated with higher IL-6 and alveolar macrophages (AMs) at 6 days postinfection (d.p.i.) in HET bronchoalveolar lavage fluid (BALF). In the present study, we found that HET AMs were an important source of IL-6 at 6 d.p.i. Infection also induced TGF-ß production by HET but not WT mice at 2 d.p.i. TGF-ß neutralization at 2 d.p.i. (TGF-N) significantly reduced BALF IL-6 in HETs at 6 d.p.i. Neither TGF-N nor IL-6 neutralization at 4 d.p.i. (IL-6-N) altered postinfection weight loss or viral replication in either mouse strain. However, both treatments increased influenza A virus-induced hypoxemia, pulmonary edema, and lung dysfunction in HETs to WT levels at 6 d.p.i. TGF-N and IL-6-N did not affect BALF AM and neutrophil numbers but attenuated the CXCL-1/keratinocyte chemokine response in both strains and reduced IFN-γ production in WT mice. Finally, bone marrow transfer experiments showed that HET stromal and myeloid cells are both required for protection from ALI in HETs. These findings indicate that TGF-ß-dependent production of IL-6 by AMs later in infection prevents ALI development in influenza A virus-infected HET mice.


Assuntos
Lesão Pulmonar Aguda/virologia , Vírus da Influenza A/imunologia , Interleucina-6/fisiologia , Infecções por Orthomyxoviridae/imunologia , Fator de Crescimento Transformador beta/fisiologia , Lesão Pulmonar Aguda/imunologia , Animais , Líquido da Lavagem Broncoalveolar , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Imunidade Inata , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CFTR , Deleção de Sequência
5.
J Control Release ; 203: 140-9, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25687308

RESUMO

Alveolar type II (ATII) respiratory epithelial cells are essential to normal lung function. They may be also central to the pathogenesis of diseases such as acute lung injury, pulmonary fibrosis, and pulmonary adenocarcinoma. Hence, ATII cells are important therapeutic targets. However, effective ATII cell-specific drug delivery in vivo requires carriers of an appropriate size, which can cross the hydrophobic alveolar surfactant film and polar aqueous layer overlying ATII cells, and be taken up without inducing ATII cell dysfunction, pulmonary inflammation, lung damage, or excessive systemic spread and side-effects. We have developed lipoplexes as a versatile nanoparticle carrier system for drug/RNA delivery. To optimize their pulmonary localization and ATII cell specificity, lipoplexes were conjugated to an antibody directed against the ATII cell-specific antigen surfactant protein-C (SP-C) then administered to C57BL/6 mice via the nares. Intranasally-administered, anti-SP-C-conjugated lipoplexes targeted mouse ATII cells with >70% specificity in vivo, were retained within ATII cells for at least 48h, and did not accumulate at significant levels in other lung cell types or viscera. 48h after treatment with anti-SP-C-conjugated lipoplexes containing the test microRNA miR-486, expression of mature miR-486 was approximately 4-fold higher in ATII cells than whole lung by qRT-PCR, and was undetectable in other viscera. Lipoplexes induced no weight loss, hypoxemia, lung dysfunction, pulmonary edema, or pulmonary inflammation over a 6-day period. These findings indicate that ATII cell-targeted lipoplexes exhibit all the desired characteristics of an effective drug delivery system for the treatment of pulmonary diseases that result primarily from ATII cell dysfunction.


Assuntos
Células Epiteliais Alveolares/imunologia , Técnicas de Transferência de Genes , Imunoconjugados/imunologia , Lipossomos/imunologia , MicroRNAs/administração & dosagem , Proteína C Associada a Surfactante Pulmonar/imunologia , Animais , Linhagem Celular , Células Cultivadas , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Lipossomos/química , Lipossomos/farmacocinética , Pulmão/imunologia , Camundongos Endogâmicos C57BL
6.
BMC Biol ; 12: 91, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25371237

RESUMO

BACKGROUND: Palmitoylation is a 16-carbon lipid post-translational modification that increases protein hydrophobicity. This form of protein fatty acylation is emerging as a critical regulatory modification for multiple aspects of cellular interactions and signaling. Despite recent advances in the development of chemical tools for the rapid identification and visualization of palmitoylated proteins, the palmitoyl proteome has not been fully defined. Here we sought to identify and compare the palmitoylated proteins in murine fibroblasts and dendritic cells. RESULTS: A total of 563 putative palmitoylation substrates were identified, more than 200 of which have not been previously suggested to be palmitoylated in past proteomic studies. Here we validate the palmitoylation of several new proteins including Toll-like receptors (TLRs) 2, 5 and 10, CD80, CD86, and NEDD4. Palmitoylation of TLR2, which was uniquely identified in dendritic cells, was mapped to a transmembrane domain-proximal cysteine. Inhibition of TLR2 S-palmitoylation pharmacologically or by cysteine mutagenesis led to decreased cell surface expression and a decreased inflammatory response to microbial ligands. CONCLUSIONS: This work identifies many fatty acylated proteins involved in fundamental cellular processes as well as cell type-specific functions, highlighting the value of examining the palmitoyl proteomes of multiple cell types. S-palmitoylation of TLR2 is a previously unknown immunoregulatory mechanism that represents an entirely novel avenue for modulation of TLR2 inflammatory activity.


Assuntos
Lipoilação , Proteômica/métodos , Receptor 2 Toll-Like/metabolismo , Acilação , Animais , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Química Click , Biologia Computacional , Células Dendríticas/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Interferon-alfa/metabolismo , Ligantes , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/genética , Proteoma/metabolismo , Receptor 2 Toll-Like/genética
7.
J Phycol ; 50(1): 187-202, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26988018

RESUMO

Twenty-six strains morphologically identified as Cylindrospermum as well as the closely related taxon Cronbergia siamensis were examined microscopically as well as phylogenetically using sequence data for the 16S rRNA gene and the 16S-23S internal transcribed spacer (ITS) region. Phylogenetic analysis of the 16S rRNA revealed three distinct clades. The clade we designate as Cylindrospermum sensu stricto contained all five of the foundational species, C. maius, C. stagnale, C. licheniforme, C. muscicola, and C. catenatum. In addition to these taxa, three species new to science in this clade were described: C. badium, C. moravicum, and C. pellucidum. Our evidence indicated that Cronbergia is a later synonym of Cylindrospermum. The phylogenetic position of Cylindrospermum within the Nostocaceae was not clearly resolved in our analyses. Cylindrospermum is unusual among cyanobacterial genera in that the morphological diversity appears to be more evident than sequence divergence. Taxa were clearly separable using morphology, but had very high percent similarity among ribosomal sequences. Given the high diversity we noted in this study, we conclude that there is likely much more diversity remaining to be described in this genus.

8.
J Virol ; 87(17): 9923-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23804635

RESUMO

The interferon-induced transmembrane proteins (IFITMs) restrict infection by numerous viruses, yet the importance and regulation of individual isoforms remains unclear. Here, we report that murine IFITM1 (mIFITM1) is palmitoylated on one nonconserved cysteine and three conserved cysteines that are required for anti-influenza A virus activity. Additionally, palmitoylation of mIFITM1 regulates protein stability by preventing proteasomal degradation, and modification of the nonconserved cysteine at the mIFITM1 C terminus supports an intramembrane topology with mechanistic implications.


Assuntos
Antígenos de Diferenciação/química , Antígenos de Diferenciação/fisiologia , Vírus da Influenza A/patogenicidade , Sequência de Aminoácidos , Animais , Antígenos de Diferenciação/genética , Sequência Conservada , Cisteína/química , Cisteína/genética , Células HEK293 , Humanos , Vírus da Influenza A/fisiologia , Lipoilação , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA