Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 310(11): E874-85, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27072493

RESUMO

Contact between ß-cells is necessary for their normal function. Identification of the proteins mediating the effects of ß-cell-to-ß-cell contact is a necessary step toward gaining a full understanding of the determinants of ß-cell function and insulin secretion. The secretory machinery of the ß-cells is nearly identical to that of central nervous system (CNS) synapses, and we hypothesize that the transcellular protein interactions that drive maturation of the two secretory machineries upon contact of one cell (or neural process) with another are also highly similar. Two such transcellular interactions, important for both synaptic and ß-cell function, have been identified: EphA/ephrin-A and neuroligin/neurexin. Here, we tested the role of another synaptic cleft protein, CADM1, in insulinoma cells and in rat and human islet ß-cells. We found that CADM1 is a predominant CADM isoform in ß-cells. In INS-1 cells and primary ß-cells, CADM1 constrains insulin secretion, and its expression decreases after prolonged glucose stimulation. Using a coculture model, we found that CADM1 also influences insulin secretion in a transcellular manner. We asked whether extracellular CADM1 interactions exert their influence via the same mechanisms by which they influence neurotransmitter exocytosis. Our results suggest that, as in the CNS, CADM1 interactions drive exocytic site assembly and promote actin network formation. These results support the broader hypothesis that the effects of cell-cell contact on ß-cell maturation and function are mediated by the same extracellular protein interactions that drive the formation of the presynaptic exocytic machinery. These interactions may be therapeutic targets for reversing ß-cell dysfunction in diabetes.


Assuntos
Moléculas de Adesão Celular/metabolismo , Exocitose/fisiologia , Imunoglobulinas/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Sintaxina 1/metabolismo , Animais , Molécula 1 de Adesão Celular , Comunicação Celular/fisiologia , Linhagem Celular , Líquido Extracelular/metabolismo , Humanos , Secreção de Insulina , Ratos , Especificidade da Espécie
2.
PLoS One ; 10(4): e0122948, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25876076

RESUMO

The poly-ADP-ribosylation (PARsylation) activity of tankyrase (TNKS) regulates diverse physiological processes including energy metabolism and wnt/ß-catenin signaling. This TNKS activity uses NAD+ as a co-substrate to post-translationally modify various acceptor proteins including TNKS itself. PARsylation by TNKS often tags the acceptors for ubiquitination and proteasomal degradation. Whether this TNKS activity is regulated by physiological changes in NAD+ levels or, more broadly, in cellular energy charge has not been investigated. Because the NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT) in vitro is robustly potentiated by ATP, we hypothesized that nutritional energy might stimulate cellular NAMPT to produce NAD+ and thereby augment TNKS catalysis. Using insulin-secreting cells as a model, we showed that glucose indeed stimulates the autoPARsylation of TNKS and consequently its turnover by the ubiquitin-proteasomal system. This glucose effect on TNKS is mediated primarily by NAD+ since it is mirrored by the NAD+ precursor nicotinamide mononucleotide (NMN), and is blunted by the NAMPT inhibitor FK866. The TNKS-destabilizing effect of glucose is shared by other metabolic fuels including pyruvate and amino acids. NAD+ flux analysis showed that glucose and nutrients, by increasing ATP, stimulate NAMPT-mediated NAD+ production to expand NAD+ stores. Collectively our data uncover a metabolic pathway whereby nutritional energy augments NAD+ production to drive the PARsylating activity of TNKS, leading to autoPARsylation-dependent degradation of the TNKS protein. The modulation of TNKS catalytic activity and protein abundance by cellular energy charge could potentially impose a nutritional control on the many processes that TNKS regulates through PARsylation. More broadly, the stimulation of NAD+ production by ATP suggests that nutritional energy may enhance the functions of other NAD+-driven enzymes including sirtuins.


Assuntos
Insulinoma/patologia , NAD/química , Tanquirases/química , Células 3T3 , Acrilamidas/química , Trifosfato de Adenosina/química , Animais , Catálise , Metabolismo Energético/genética , Glucose/química , Células HEK293 , Humanos , Camundongos , Nicotinamida Fosforribosiltransferase/química , Piperidinas/química , Complexo de Endopeptidases do Proteassoma/química , Processamento de Proteína Pós-Traducional , Ratos , Ubiquitina/química
3.
Am J Physiol Endocrinol Metab ; 299(1): E23-32, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20442321

RESUMO

Pancreatic islet beta-cells contain synaptic-like microvesicles (SLMVs). The origin, trafficking, and role of these SLMVs are poorly understood. In neurons, synaptic vesicle (SV) biogenesis is mediated by two different cytosolic adaptor protein complexes, a ubiquitous AP-2 complex and the neuron-specific AP-3B complex. Mice lacking AP-3B subunits exhibit impaired GABAergic (inhibitory) neurotransmission and reduced neuronal vesicular GABA transporter (VGAT) content. Since beta-cell maturation and exocytotic function seem to parallel that of the inhibitory synapse, we predicted that AP-3B-associated vesicles would be present in beta-cells. Here, we test the hypothesis that AP-3B is expressed in islets and mediates beta-cell SLMV biogenesis. A secondary aim was to test whether the sedimentation properties of INS-1 beta-cell microvesicles are identical to those of bona fide SLMVs isolated from PC12 cells. Our results show that the two neuron-specific AP-3 subunits beta3B and mu3B are expressed in beta-cells, the first time these proteins have been found to be expressed outside the nervous system. We found that beta-cell SLMVs share the same sedimentation properties as PC12 SLMVs and contain SV proteins that sort specifically to AP-3B-associated vesicles in the brain. Brefeldin A, a drug that interferes with AP-3-mediated SV biogenesis, inhibits the delivery of AP-3 cargoes to beta-cell SLMVs. Consistent with a role for AP-3 in the biogenesis of GABAergic SLMV in beta-cells, INS-1 cell VGAT content decreases upon inhibition of AP-3 delta-subunit expression. Our findings suggest that beta-cells and neurons share molecules and mechanisms important for mediating the neuron-specific membrane trafficking pathways that underlie synaptic vesicle formation.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Células Secretoras de Insulina/fisiologia , Vesículas Sinápticas/fisiologia , Fatores de Transcrição/fisiologia , Animais , Western Blotting , Brefeldina A/farmacologia , Proteínas de Ligação a DNA/genética , Imuno-Histoquímica , Insulina/fisiologia , Microscopia Confocal , Células PC12 , Inibidores da Síntese de Proteínas/farmacologia , RNA/química , RNA/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Transcrição/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/fisiologia
4.
Endocrinology ; 149(12): 6006-17, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18755801

RESUMO

The composition of the beta-cell exocytic machinery is very similar to that of neuronal synapses, and the developmental pathway of beta-cells and neurons substantially overlap. beta-Cells secrete gamma-aminobutyric acid and express proteins that, in the brain, are specific markers of inhibitory synapses. Recently, neuronal coculture experiments have identified three families of synaptic cell-surface molecules (neurexins, neuroligins, and SynCAM) that drive synapse formation in vitro and that control the differentiation of nascent synapses into either excitatory or inhibitory fully mature nerve terminals. The inhibitory synapse-like character of the beta-cells led us to hypothesize that members of these families of synapse-inducing adhesion molecules would be expressed in beta-cells and that the pattern of expression would resemble that associated with neuronal inhibitory synaptogenesis. Here, we describe beta-cell expression of the neuroligins, neurexins, and SynCAM, and show that neuroligin expression affects insulin secretion in INS-1 beta-cells and rat islet cells. Our findings demonstrate that neuroligins and neurexins are expressed outside the central nervous system and help confer an inhibitory synaptic-like phenotype onto the beta-cell surface. Analogous to their role in synaptic neurotransmission, neurexin-neuroligin interactions may play a role in the formation of the submembrane insulin secretory apparatus.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Processamento Alternativo , Animais , Western Blotting , Encéfalo/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Linhagem Celular Tumoral , Glicoproteínas/genética , Glicoproteínas/metabolismo , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Humanos , Secreção de Insulina , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Confocal , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Interferência de RNA , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA