Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 13(3): e12417, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38499475

RESUMO

Small extracellular vesicles (sEVs) released by acute myeloid leukaemia (AML) cells have been reported to influence the trilineage differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, it remains elusive which biological cargo from AML-sEVs is responsible for this effect. In this study, sEVs were isolated from cell-conditioned media and blood plasma using size-exclusion chromatography and ultrafiltration and characterized according to MISEV2018 guidelines. Our results demonstrated that AML-sEVs increased the proliferation of BM-MSCs. Conversely, key proteins that are important for normal haematopoiesis were downregulated in BM-MSCs. Additionally, we revealed that AML-sEVs significantly reduced the differentiation of BM-MSCs to osteoblasts without affecting adipogenic or chondrogenic differentiation. Next, LC-MS/MS proteomics elucidated that various proteins, including Y-box-binding protein 1 (YBX1), were upregulated in both AML-sEVs and BM-MSCs treated with AML-sEVs. Clinically relevant, we found that YBX1 is considerably upregulated in most paediatric AML patient-derived sEVs compared to healthy controls. Interestingly, sEVs isolated after the downregulation of YBX1 in AML cells remarkably rescued the osteoblastic differentiation of BM-MSCs. Altogether, our data demonstrate for the first time that YBX1 containing AML-sEVs is one of the key players that disrupt the normal function of bone marrow microenvironment by reducing the osteogenic differentiation of BM-MSCs.


Assuntos
Vesículas Extracelulares , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Criança , Humanos , Cromatografia Líquida , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos , Osteogênese , Espectrometria de Massas em Tandem , Microambiente Tumoral , Proteína 1 de Ligação a Y-Box/metabolismo
3.
Cancers (Basel) ; 14(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35565197

RESUMO

Small extracellular vesicles (sEVs) play essential roles in intercellular signaling both in normal and pathophysiological conditions. Comprehensive studies of dsDNA associated with sEVs are hampered by a lack of methods, allowing efficient separation of sEVs from free-circulating DNA and apoptotic bodies. In this work, using controlled culture conditions, we enriched the reproducible separation of sEVs from free-circulated components by combining tangential flow filtration, size-exclusion chromatography, and ultrafiltration (TSU). EV-enriched fractions (F2 and F3) obtained using TSU also contained more dsDNA derived from the host genome and mitochondria, predominantly localized inside the vesicles. Three-dimensional reconstruction of high-resolution imaging showed that the recipient cell membrane barrier restricts a portion of EV-DNA. Simultaneously, the remaining EV-DNA overcomes it and enters the cytoplasm and nucleus. In the cytoplasm, EV-DNA associates with dsDNA-inflammatory sensors (cGAS/STING) and endosomal proteins (Rab5/Rab7). Relevant to cancer, we found that EV-DNA isolated from leukemia cell lines communicates with mesenchymal stromal cells (MSCs), a critical component in the BM microenvironment. Furthermore, we illustrated the arrangement of sEVs and EV-DNA at a single vesicle level using super-resolution microscopy. Altogether, employing TSU isolation, we demonstrated EV-DNA distribution and a tool to evaluate the exact EV-DNA role of cell-cell communication in cancer.

4.
Cell Biosci ; 12(1): 37, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346363

RESUMO

Extracellular vesicle (EV) secretion is a highly conserved evolutionary trait in all organisms in the three domains of life. The packaging and release of EVs appears to be a bulk-flow process which takes place mainly under extreme conditions. EVs participate in horizontal gene transfer, which supports the survival of prokaryotic and eukaryotic microbes. In higher eukaryotes, almost all cells secrete a heterogeneous population of EVs loaded with various biomolecules. EV secretion is typically higher in cancer microenvironments, promoting tumor progression and metastasis. EVs are now recognized as additional mediators of autocrine and paracrine communication in health and disease. In this context, proteins and RNAs have been studied the most, but extracellular vesicle DNA (EV-DNA) has started to gain in importance in the last few years. In this review, we summarize new findings related to the loading mechanism(s), localization, and post-shedding function of EV-DNA. We also discuss the feasibility of using EV-DNA as a biomarker when performing a liquid biopsy, at the same time emphasizing the lack of data from clinical trials in this regard. Finally, we outline the potential of EV-DNA uptake and its interaction with the host genome as a promising tool for understanding the mechanisms of cancer evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA