Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(23): e2200363119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35653569

RESUMO

The nanomaterial­protein "corona" is a dynamic entity providing a synthetic­natural interface mediating cellular uptake and subcellular distribution of nanomaterials in biological systems. As nanomaterials are central to the safe-by-design of future nanomedicines and the practice of nanosafety, understanding and delineating the biological and toxicological signatures of the ubiquitous nanomaterial­protein corona are precursors to the continued development of nano­bio science and engineering. However, despite well over a decade of extensive research, the dynamics of intracellular release or exchange of the blood protein corona from nanomaterials following their cellular internalization remains unclear, and the biological footprints of the nanoparticle­protein corona traversing cellular compartments are even less well understood. To address this crucial bottleneck, the current work screened evolution of the intracellular protein corona along the endocytotic pathway from blood via lysosomes to cytoplasm in cancer cells. Intercellular proteins, including pyruvate kinase M2 (PKM2), and chaperones, displaced some of the initially adsorbed blood proteins from the nanoparticle surface, which perturbed proteostasis and subsequently incited chaperone-mediated autophagy (CMA) to disrupt the key cellular metabolism pathway, including glycolysis and lipid metabolism. Since proteostasis is key to the sustainability of cell function, its collapse and the resulting CMA overdrive spell subsequent cell death and aging. Our findings shed light on the consequences of the transport of extracellular proteins by nanoparticles on cell metabolism.


Assuntos
Nanoestruturas , Coroa de Proteína , Coroa de Proteína/metabolismo , Proteômica , Proteostase , Piruvato Quinase/metabolismo
2.
Environ Sci Technol ; 55(13): 8721-8729, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34110809

RESUMO

Reliable chemical identification of specific polymers in environmental samples represents a major challenge in plastic research, especially with the wide range of commercial polymers available, along with variable additive mixtures. Thermogravimetric analysis-Fourier transform infrared-gas chromatography-mass spectrometry (TGA-FTIR-GC-MS) offers a unique characterization platform that provides both physical and chemical properties of the analyzed polymers. This study presents a library of 11 polymers generated using virgin plastics and post-consumer products. TGA inflection points and mass of remaining residues following pyrolysis, in some cases, proved to be indicative of the polymer type. FTIR analysis of the evolved gas was able to differentiate between all but polypropylene (PP) and polyethylene (PE). Finally, GC-MS was able to differentiate between the unique chemical fingerprints of all but one polymer in the library. This library was then used to characterize real environmental samples of mesoplastics collected from beaches in the U.K. and South Africa. Unambiguous identification of the polymer types was achieved, with PE being the most frequently detected polymer and with South African samples indicating variations that potentially resulted from aging and weathering.


Assuntos
Plásticos , Polímeros , Análise de Fourier , Cromatografia Gasosa-Espectrometria de Massas , África do Sul , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Environ Pollut ; 269: 116134, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33290949

RESUMO

Fe-based nanoparticles (Fe-based NPs) have great potential as a substitute for traditional Fe-fertilizer; however, their environmental risk and impact on plant growth are not fully understood. In this study, we compared the physiological impacts of three different Fe-based NP formulations: zero-valent iron (ZVI), Fe3O4 and Fe2O3 NPs, on hydroponic rice after root exposure for 2 weeks. Fe-normal (Fe(+)) and Fe-deficiency (Fe(-)) conditions were compared. Results showed that low dose (50 mg L-1) of ZVI and Fe3O4 NPs improved the rice growth under Fe(-) condition, while Fe2O3 NPs did not improve plant growth and caused phytotoxicity at high concentration (500 mg L-1). Under Fe(+) conditions, none of the Fe-based NPs exhibited positive effects on the rice plants with plant growth actually being inhibited at 500 mg L-1 evidenced by reduced root volume and leaf biomass and enhanced oxidative stress in plant. Under Fe(-) condition, low dose (50 mg L-1) of ZVI NPs and Fe3O4 NPs increased the chlorophyll content by 30.7% and 26.9%, respectively. They also alleviated plant stress demonstrated by the reduced oxidative stress and decreased concentrations of stress related phytohormones such as gibberellin and indole-3-acetic acid. Low dose of ZVI and Fe3O4 NPs treatments resulted in higher Fe accumulation in plants compared to Fe2O3 NPs treatment, by down-regulating the expression of IRT1 and YSL15. This study provides significant insights into the physiological impacts of Fe-based NPs in rice plants and their potential application in agriculture. ZVI and Fe3O4 NPs can be used as Fe-fertilizers to improve rice growth under Fe-deficient condition, which exist in many rice-growing regions of the world. However, dose should be carefully chosen as high dose (500 mg L-1 in this study) of the Fe-based NPs can impair rice growth.


Assuntos
Nanopartículas , Oryza , Fertilizantes , Ferro , Raízes de Plantas
4.
J Vis Exp ; (164)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33191929

RESUMO

The adsorption of biomolecules from surrounding biological matrices to the surface of nanomaterials (NMs) to form the corona has been of interest for the past decade. Interest in the bio-nano interface arises from the fact that the biomolecular corona confers a biological identity to NMs and thus causes the body to identify them as "self". For example, previous studies have demonstrated that the proteins in the corona are capable of interacting with membrane receptors to influence cellular uptake and established that the corona is responsible for cellular trafficking of NMs and their eventual toxicity. To date, most research has focused upon the protein corona and overlooked the possible impacts of the metabolites included in the corona or synergistic effects between components in the complete biomolecular corona. As such, this work demonstrates methodologies to characterize both the protein and metabolite components of the biomolecular corona using bottom-up proteomics and metabolomics approaches in parallel. This includes an on-particle digest of the protein corona with a surfactant used to increase protein recovery, and a passive characterization of the metabolite corona by analyzing metabolite matrices before and after NM exposures. This work introduces capillary electrophoresis - mass spectrometry (CESI-MS) as a new technique for NM corona characterization. The protocols outlined here demonstrate how CESI-MS can be used for the reliable characterization of both the protein and metabolite corona acquired by NMs. The move to CESI-MS greatly decreases the volume of sample required (compared to traditional liquid chromatography - mass spectrometry (LC-MS) approaches) with multiple injections possible from as little as 5 µL of sample, making it ideal for volume limited samples. Furthermore, the environmental consequences of analysis are reduced with respect to LC-MS due to the low flow rates (<20 nL/min) in CESI-MS, and the use of aqueous electrolytes which eliminates the need for organic solvents.


Assuntos
Eletroforese Capilar/métodos , Metaboloma , Nanoestruturas/química , Coroa de Proteína/química , Espectrometria de Massas em Tandem/métodos , Adsorção , Cromatografia Líquida , Eletrólitos/química , Humanos , Isomerismo , Peptídeos/química , Reprodutibilidade dos Testes
5.
Nanoscale ; 12(36): 18600-18605, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32914812

RESUMO

Graphene family nanomaterials (GFNs) have shown great potential for biological and environmental applications; however, their future use has been debated due to their reported potential neurotoxicity. Moreover, the effects of surface functionalization on their biological end points are largely unknown. Here, we compared the effects of reduced graphene oxide (RGO), and carboxylated (G-COOH), hydroxylated (G-OH) and aminated (G-NH2) graphene nanosheets on human neuroblastoma cells (SK-N-SH). All GFNs inhibited cellular growth at concentrations of 0.1-10 mg L-1 after 24 h exposure. The toxicity was attenuated over longer exposure times, with the exception of G-NH2. Although the overall acute toxicity followed the order: G-OH ≈ G-COOH > RGO > G-NH2, G-NH2 induced more persistent toxicity and more metabolic disturbance compared to the other GFNs, with lipid and carbohydrate metabolism being the most affected. The potential for physical disruption of the lipid membrane and oxidative damage induced by GFNs varied with different functionalization, which accounts for the observed differences in neurotoxicity. This study provides significant insights into the neurological effects of GFNs, and suggests that G-NH2 is not as safe as reported in many previous studies. The neurological effect of GFNs over longer term exposure should be considered in future studies.


Assuntos
Grafite , Nanoestruturas , Grafite/toxicidade , Humanos , Nanoestruturas/toxicidade , Estresse Oxidativo
6.
J Chromatogr A ; 1600: 127-136, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31047664

RESUMO

Faeces are comprised of a wide array of metabolites arising from the circulatory system as well as the human microbiome. A global metabolite analysis (metabolomics) of faecal extracts offers the potential to uncover new compounds which may be indicative of the onset of bowel diseases such as colorectal cancer (CRC). To date, faecal metabolomics is still in its infancy and the compounds of low abundance present in faecal extracts poorly characterised. In this study, extracts of faeces from healthy subjects were profiled using a sensitive nanoflow-nanospray LC-MS platform which resulted in highly repeatable peak retention times (<2% CV) and intensities (<15% CV). Analysis of the extracts revealed wide coverage of the faecal metabolome including detection of low abundant signalling compounds such as sex steroids and eicosanoids, alongside highly abundant pharmaceuticals and tetrapyrrole metabolites. A small pilot study investigating differences in metabolomics profiles of faecal samples obtained from 7 CRC, 25 adenomatous polyp and 26 healthy groups revealed that secondary bile acids, conjugated androgens, eicosanoids, phospholipids and an unidentified haem metabolite were potential classes of metabolites that discriminated between the CRC and control sample groups. However, much larger follow up studies are needed to confirm which components of the faecal metabolome are associated with actual CRC disease rather than dietary influences. This study reveals the potential of nanospray-nanoflow LC-MS profiling of faecal samples from large scale cohort studies for uncovering the role of the faecal metabolome in colorectal disease formation.


Assuntos
Cromatografia Líquida , Fezes/química , Metaboloma , Espectrometria de Massas por Ionização por Electrospray , Ácidos e Sais Biliares/análise , Eicosanoides/análise , Feminino , Voluntários Saudáveis , Humanos , Masculino , Metabolômica , Fosfolipídeos/análise , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA